BUILDINGENERGY BOSTON

Retrofitting Existing Buildings into Low-Carbon Assets

Eva Rosenbloom (RMI) Chris Magwood (Builders for Climate Action)

Curated by Clay Tilton

Northeast Sustainable Energy Association (NESEA) March 29, 2023

Learning Objectives

Comprehend the differences and relationship between embodied carbon and operating carbon emissions in building retrofits Amortize the upfront embodied carbon emissions costs associated with a deep energy retrofit with the anticipated operating carbon emissions savings. Identify key components in exterior assemblies that benefit from the strategic use of low-embodied carbon materials and carbon storing materials. **Discuss** policies and market development which support investment in low embodied carbon and carbon storing materials and deep energy retrofits solutions.

RMI – Energy. Transformed.

We cannot solve the climate challenge without rapidly scaling solutions for existing buildings.

We cannot solve the climate challenge without rapidly scaling solutions for existing buildings.

We cannot solve the climate challenge without rapidly scaling solutions for existing buildings.

Hot off the presses...

Newly published report available

KEY TAKEAWAYS:

- ✓ Embodied carbon impacts can be equivalent of
 2-7 years of operational reductions
- Combined analysis enables best achievable climate impact
- Carbon-storing materials can enable realization of immediate climate benefits
- Embodied carbon analysis maximizes climate benefits of retrofits, but is not a reason to avoid retrofits

Transforming Existing Buildings from Climate Liabilities to Climate Assets

Low Embodied Carbon and Carbon-Storing Materials in Building Retrofits Can Reduce Total Building Emissions

RMI – Energy. Transformed.

Report / February 2023

How to do analysis: operations

How to do analysis: materials

-

WALL GWP

R-30 Insulation + Exterior Cladding X Wall Surface SF WINDOW GWP

U-0.16 Triple-paned windows

X Window SF

ROOF **GWP R-60** Insulation + Membrane Χ **Roof surface SF**

Total tonnes CO2e

Estimating material carbon emissions

450 kgCO₂e

EPDs a "nutrition label" for building products

EPD - Product Impacts

Declared Unit: 1 m³

Construction Material

Amount per Unit

Global Warming Potential

Emitted	475 kgCO2e		
Sequestered	-25 kgCO2e		
Ozone Depletion	0.00 kgCFC11e		
Acidification Potential	3.01 kgSO26		
Eutrophication Potential	0.15 kgNe		
Smog Formation	0.63 kgO3e		
Primary Energy Demand	3020 MJ		
Non-renewable	3045 MJ		
Renewable	25 MJ		
have a constrained to be presented as a second			

Emissions are declared as kilograms of carbon dioxide equivalent (kg CO2e)/unit

Estimating material carbon emissions

Calculation for GWP for a particular building

A1-A3 GWP factors from EPDs A1-A3 biogenic carbon storage –10% discount

Material quantity

Net emissions kg CO₂e

EPD - Product Impacts

Declared Unit: 1 m³

Construction Material

Amount per Unit

Global Warming Potential	450 kgCO ₂ e
Emitted	4750 kgCO ₂ e
Sequestered	-25 kgCO ₂ e
Ozone Depletion	0.00 kgCFC11e
Acidification Potential	3.01 kg\$O ₂ e
Eutrophication Potential	0_15 kgNe
Smog Formation	0.63 kgO₃€
Primary Energy Demand	3020 M.
Non-renewable	.3045 M.
Renewable	25 M.

How does embodied carbon relate to operating?

Operational reductions

	320		
	300		
	280		
	260		
<u>.</u>	240		
θ̈́Ξ	220		
Q	200		
ons	180		
iissi e	160		
С Ц	140		50% Reductions in
) TO	120	105 MTCO2e	Emissions due to
0 ≥	100		Energy Efficiency and
SNC	80		Electrification
enhe	60		53 MTCO2e
). Le	40		
0	20		
	0		·····

52 MT CO2e ANNUAL OPERATING CARBON SAVINGS

Annual Operating Emissions

High embodied carbon materials

	320				
	300				
	280				
	260				
$\widehat{}$	240				
ĥ	220				
6	200				
suc	180				
issio	160				
Em O 2	140		50% Reductions in		
∂as /TC	120	105 MTCO2e	Emissions due to		
o ≥	100		Energy Efficiency and		
snoi	80		Electrification		
enh	60		53 MTCO2e		
e c	40				
0	20				
	0			·····	
		Annual Oper	atina Emissions	One-tim	l e Emissions
		· · · · · · · · · · · · · · · · · · ·		(Embod	ied Carbon)

WHEN? HOW LONG TO REALIZE CARBON SAVINGS?

Moderate embodied carbon materials

	320			
	300			
	280			
	260			
-	240			-
С Ч	220			
ତି	200			
suc	180			
issi e	160			
Em O 2	140		50% Reductions in	
) as	120	105 MTCO2e	Emissions due to	
e e e	100		Energy Efficiency and	
sno	80		Electritication	
enh	60		53 MTCO2e	
re	40			
0	20			
	0			
			Y	Y
		Annual Ope	rating Emissions	One-time Emissions (Embodied Carbon)

WHEN? HOW LONG TO REALIZE CARBON SAVINGS?

Net negative embodied carbon materials

	320				
	300				
	280				
	260				
()	240				
<u>e</u>	220				
Q	200				
suo	180				
issi e	160				
O 2	140		50% Reductions in	WITIEIN:	
i TÇ	120	105 MTCO2e	Emissions due to	HOW LONG TO	
o €	100		Energy Efficiency and		
sno	80		Electrification	DEALIZE CADRON	
hne	60		53 MTCO2e	REALIZE CARDOI	
ree	40			SAVINGS?	
Ċ	20			SATINOS:	
	0		γ	One-time Carbon Stor	age
		Annual Opera	ating Emissions		

Immediately

If we can achieve better results, we should!

Don't tear the old building down...

1150 1100 1050 950				1242 MTCO2e	
900					
850					
750					Approximate
700					Embodied Carbon
650					Embodied Carbon
600					to build NEW!
550					
500					N NO
450					N NO
400					0 00 00 00 00 00 00 00 00 00 00 00 00 1
350					
300	Historic	50% Reductions in	350		
250		Emissions due to	MTCO20		
200	Emissions	Energy Efficiency and			
150	105 MTCO2e	Electrification			
100		53 MTCO2e			0 00 00 00 00 00 00 00 00 00 00 00 1
50					
0				·····	
	<u> </u>		7+ years		

Annual Operating Emissions

Greenhouse Gas Emissions (GHG) MTCO2e

Maximize operating carbon savings with low impact retrofit assemblies **KEY STRATEGIES**

1. Create the most impact with the least amount of materials

2. Reduce materials with high embodied carbon

- Metals
 Plastic / Foams Glass

Maximize operating carbon savings with low impact retrofit assemblies KEY STRATEGIES

- 1. Create the most impact with the least amount of materials
- 2. Reduce materials with high embodied carbon
- 3. Increase materials with "negative" emissions

- Agricultural residues
- Waste & recycling stream fibers
- Purpose grown crops
- Timber

Biogenic carbon

Interrupting the carbon cycle to remove CO_2 from the atmosphere

Bio-based materials, e.g., straw, bamboo, lumber, etc. M&S Flagship Store Cheshire Oaks, 2012

RMI – Energy. Transformed.

Retrofit Embodied Carbon Calculation Exercise

WALL ASSEMBLY

Retrofit Embodied Carbon Calculation Exercise

BUILDINGENERGY BOSTON

Retrofitting Existing Buildings into Low-Carbon Assets

EMBODIED CARBON WORKSHEET: RETROFIT ASSEMBLY

Type/Model	Materials	Net GWP kg CO ₂ e /SF	Cost	Codes	Material or Labor Availability	Building Science Pros/ Cons	Notes/ Comments/ Questions
WALL ASSEMBLY: R30							
Cavity/Continuous Insulation							
Framing / Furring							
Structural Sheathing							
Barriers: A/V/WR							
Exterior Finish							
Other							

Wall Assembly TOTAL

ROOF ASSEMBLY: R60				
Cavity Insulation/Attic				
Barriers: A/V/WR				
Continuous Insulation				
Roof Decking/Cover Board				
Roofing Membrane				
Other				

Roof Assembly TOTAL

WINDOWS / GLAZING				
Glazing + Frame				
Window Assembly TOTAL				

Factors to consider in an energy retrofit

- COSTS
- CODE
 COMPLIIANCES
- AVAILABLE LABOR
- SUPPLY CHAIN
- BUILDING SCIENCE
 CONCERNS

EVALUATING AND COMPARING FACTORS

Case Study: Sundance Housing Co-op Edmonton, Alberta

- Prefabricated 2x4" wooden framed panel and sheathing
- 8" cavity site-filled with dense packed cellulose insulation (R-26 effective)
- Vapor open water-resistive air barrier
- Rainscreen, furring, and fiber cement siding

Case Study: De Roomley Sports Hall Udenhout, Netherlands

- Prefabricated wood-framed panels 7×3 meters (~23 x 10 feet) (~15 inches thick)
- Panels filled with dense-packed straw insulation (R-36)
- Panels enclosed with wood fiberboard insulation (R-10)
- Charred wood siding

*Please note: Grey bars are the results from the in-person session group exercise. Material selections and calculations have not been verified. This is for review & reference only.

Live Results

Bio-based products

Dozens of available and forthcoming materials offering net carbon storage...

Credit: Oryzatech

Panelized solutions using bio-based insulation, structure and cladding are feasible, practical & affordable

Credit: Agriboard

Embodied Carbon Reduction Challenge

- 11 Prizes of \$30,000 \$50,000
- New construction or substantial renovation 20,000+ sq. ft. in design development or recently completed
- Free trainings, Life Cycle Analysis tool access, and competition guidelines coordinated by Built Environment Plus (BE+) – see website and express interest form for access
- Submissions due end of March 2024
- 5 Prizes held for Lead Applicants who haven't produced an LCA for a client before

Concrete EPD Kickstarter: Environmental Product Declarations

- \$3,000 grant for each Massachusetts ready-mix concrete plants; extra \$1,000 for small companies (1-2 plants)
- To partially offset costs for third-party verified site specific instant EPDs for any mix
- Begins May 2023
- hq@macapa.org

BUILDINGENERGY BOSTON

Thank You!

Questions?

Eva Rosenbloom erosenbloom@rmi.org Chris Magwood <u>cmagwood@rmi.org</u>

Northeast Sustainable Energy Association (NESEA) March 29, 2023