BUILDINGENERGY BOSTON

Quality and Quantity: Strategies for Accelerating Single Family Passive Houses

Andy Allwine (Passive to Positive) Matt Bowers (AUROS) Michael Hindle (Passive to Positive) John Loercher (Phius / Northeast Projects)

Curated by Danny Veerkamp (Woodhull) and Frank Stone (New Ecology)

Northeast Sustainable Energy Association (NESEA) | March 20, 2024

Quality ANDQuantity

Case studies in advancing the single-family passive house market

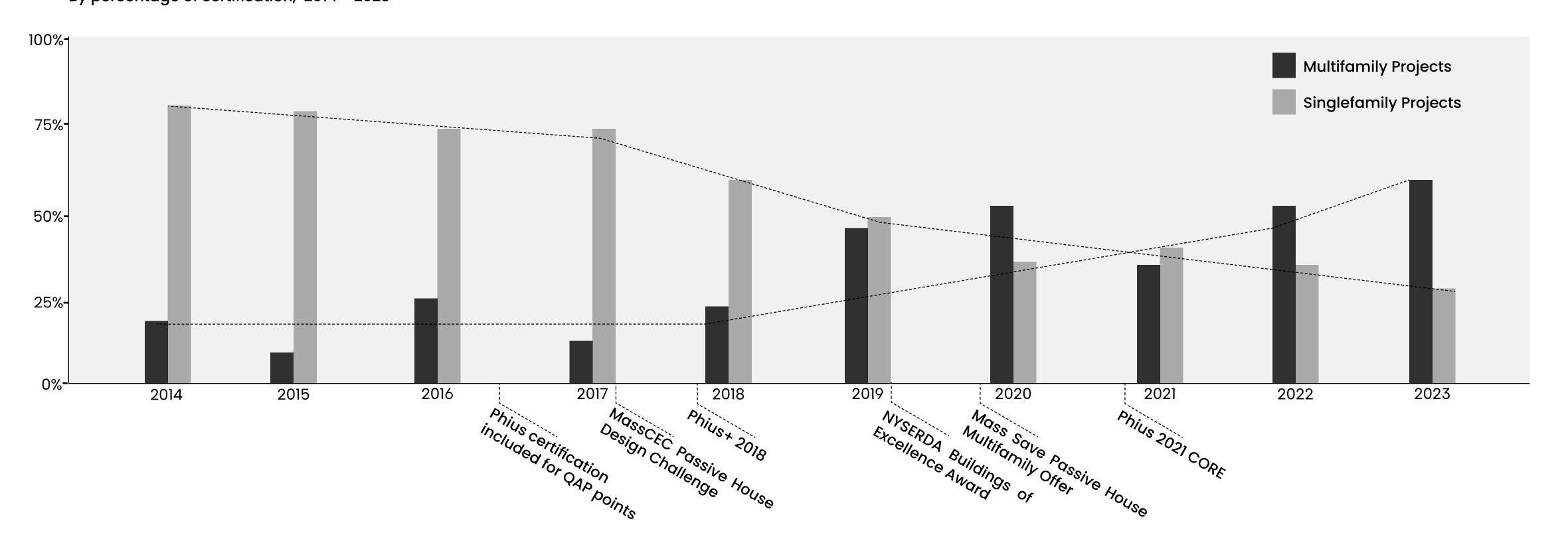
Moderated Session (60 mins)

- 1- Introduction Presentation, John Loercher (5 mins)
- 2-Case 1: Eagle Rock, Passive to Positive Andy Allwine (15 mins)
- 3-Case 2: Rachel Carson Ecovillage, Auros Group Matt Bowers (15 mins)
- 4-Case 3: Flex House, Northeast Projects John Loercher (15 mins)
- 5-Discussion + Q&A, (10 mins)

Learning Outcomes:

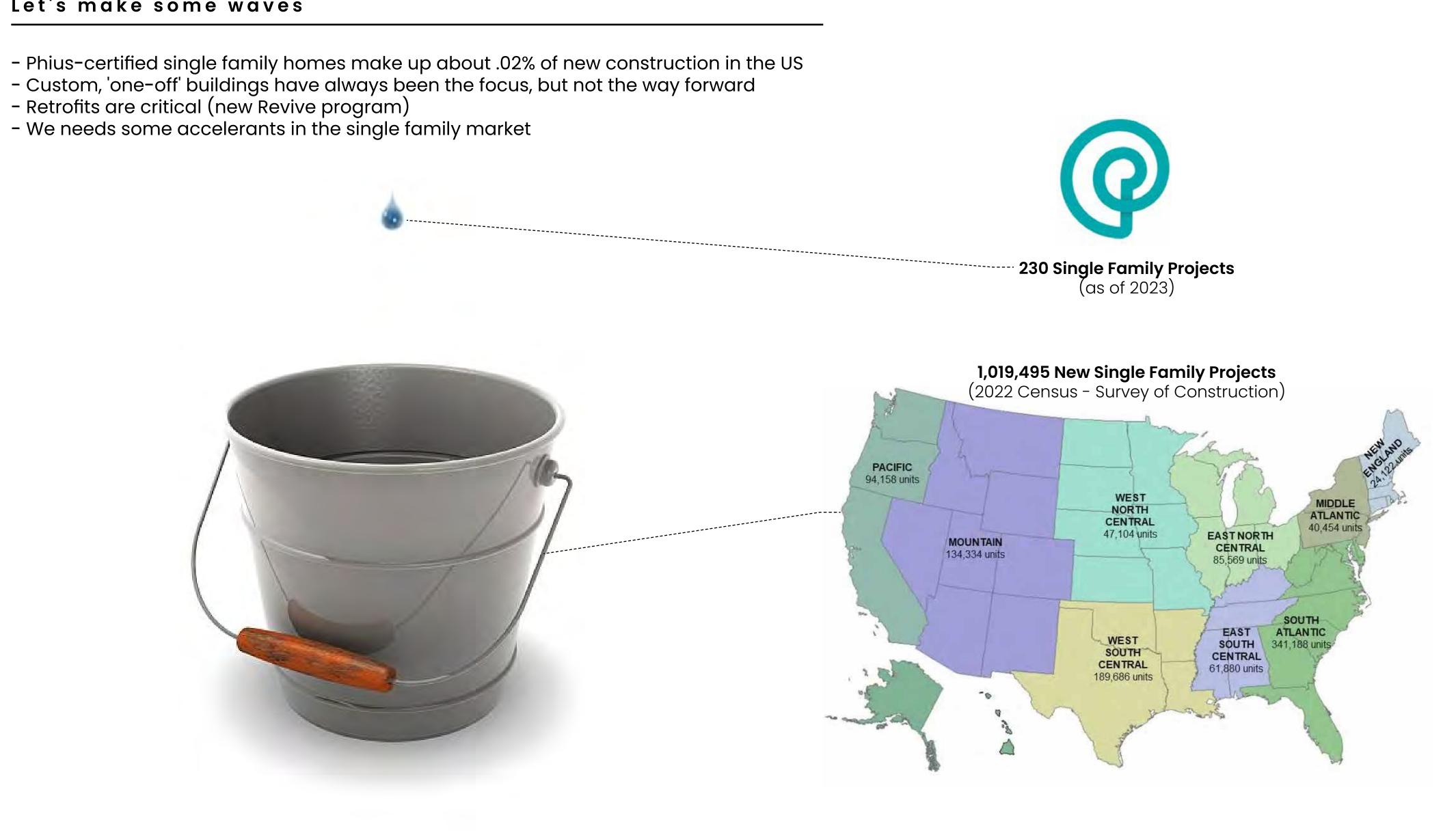
- 1. Expedite the process of certifying multiple single-family units within a development
- 2. Reduce the total cost/sq. foot of single-family homes to that seen in the multifamily market
- 3. Successfully prefabricate and construct entire communities of Phius certified buildings

Rachel Carson Ecovillage Auros Group / Evolve



Certification Growth

Factors contributing to Multifamily adoption


- Better form factor favorable building energy balance
- Proven to be only 2-5% above conventional costs
- Passive House included in QAPs across the country for LMI housing
- Updated buildings codes, stretch codes and local legislation (bottom-up approach)
- Incentives favor standardized, verifiable certifications

MULTIFAMILY AND SINGLEFAMILY PROJECTS By percentage of certification, 2014 - 2023

Let's make some waves

Accelerants

Adoptable Prescriptive Customizable

Alternative Construction Methods

- Prefabricated options Modular and Panelized
- CNC fabrication
- Exciting new materials and products

Alternative Project Delivery Methods

- Integrated design development
- Design-build / Integrated Project Delivery
- Onsite training and certified professionals

Phius Protocols for Developments

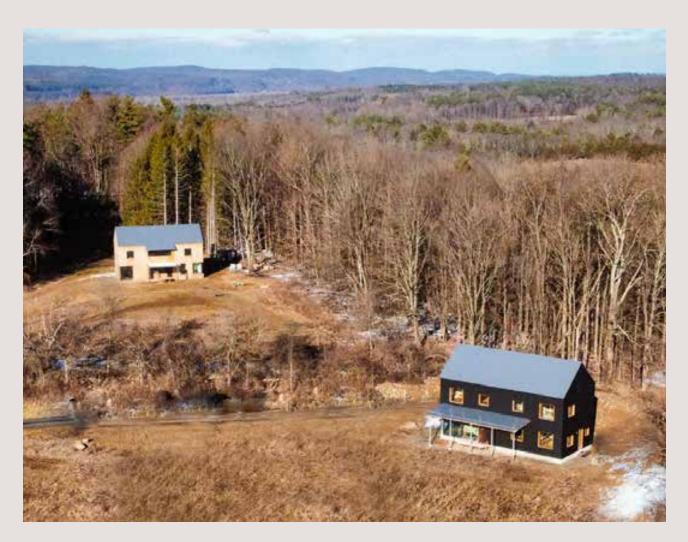
- Phius offers ways to make certification for multiple buildings easier by offering:

- 1. A site-source energy protocol
- 2. A cumulative project review process

Phius 2021 CORE Prescriptive Path

- Significantly reduced review timeline
- -Prescriptiverequirementsforallbuildingcomponents
- Not as site-dependent as the performance path

RODE Architects Architect: CPHC: Passive to Positive Builder: TBD


17 Individual residences integrated with complete site design and targetting Phius ZERO certification

Eagle Rock Stoughton, MA Architect: Evolve EA Auros Group / Northeast Projects CPHC: Builder: **Blueprint Robotics**

35 Phius 2021 CORE certified housing units across 16 buildings in a walkable ecovillage.

Rachel Carson Ecovillage Pittsburgh, PA

Case Studies

Architect: North River Architecture + planning CPHC: Northeast Projects Builder: North River Design + Build

An adaptive design tied to the Phius prescriptive path, executed in a design-build-develope method

Flex House Various sites, NY

> **Phius Certified** Integrated Design Economy of Scale

Passive to POSITIVE PASSIVE HOUSE AND LOW IMPACT DESIGN MICHAEL HINDLE, CPHC – Owner, Principal michael@passivetopositive.com 240-431-1281

ANDY ALLWINE, AIA, CPHC andy@passivetopositive.com

Quality and Quantity SINGLE FAMILY PROJECT COMPARISON

EAGLE ROCK

DEVELOPER / BUILDER: DMITRY BASKI ARCHITECT: RODE STRUCTURAL: TLH CONSULTING MEP: TBD - DESIGN/BUILD CPHC: PASSIVE TO POSITIVE

RODE

Passive to POSITIVE PASSIVE HOUSE AND LOW IMPACT DESIGN

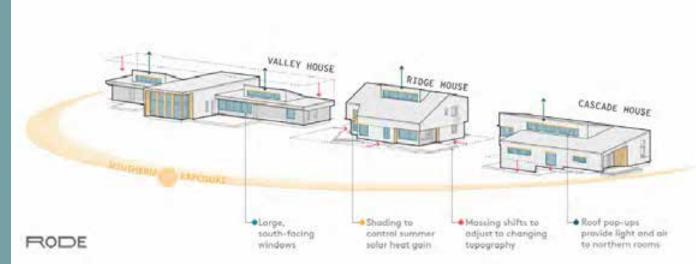
SINGLE FAMILY DEVELOPMENT - 3 BUILDING TYPES ACROSS 17 SITES

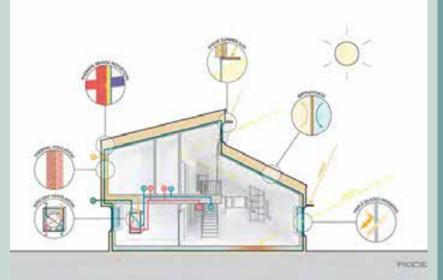
CONSISTENCY OF CONSTRUCTION ACROSS BUILDING TYPES Variety of building form aesthetic within standardization

PASSIVE HOUSE INTEGRATION Passive House consultants included from the beginning

INTEGRATED DESIGN & CONSTRUCTION TEAM Experienced architect & developer with immediate past project experience

INTEGRATED DESIGN BONUS! Low Embodied Carbon, Resilience





Integrated Design Team & Process

- Early CPHC integration starting at site planning
- Passive House Experienced Developer & Architectural team
- Optimized site orientation determined design for Passive measures

PUT THE PASSIVE BACK IN PASSIVE HOUSE

Site Design Challenges

Variable Landscape per Site Passive design w/o consistent site shading

Site Orientation All instances of the building are oriented within 15° of south

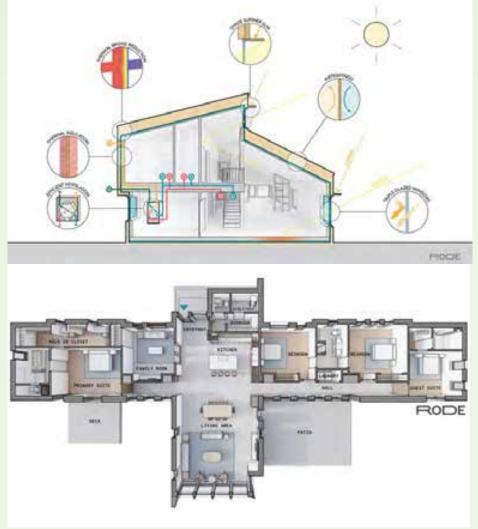
Variable Topography per Site Building forms reflect the 'optimized compromise' between site topo and solar orientation (stack house vs split house)

Glazing Ratios & Shading Reviews built into Architect's design process

EAGLE ROCK FLAT HOUSE

DEVELOPER / BUILDER: DMITRY BASK ARCHITECT: RODE STRUCTURAL: TLH CONSULTING MEP: TBD - DESIGN/BUILD CPHC: PASSIVE TO POSITIVE

RODE


Passive to POSITIVE

MODELED ALL THREE HOUSES TO FEASIBILITY LEVEL TO DETERMINE WORST CASE SCENARIO

DESIGN TO THE WORST CASE SCENARIO

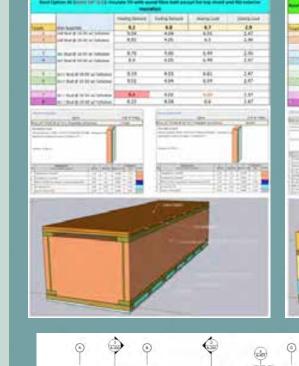
- Long Linear Layout
- Largest iCFA/Occupant
- Large Southern Glass Wall
- Architecturally open interiors cathedral ceilings
- Hidden systems

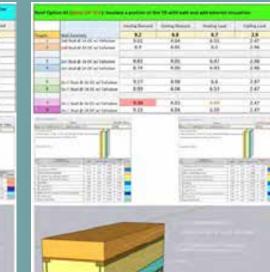
ASSEMBLIES OPTIONS AND ANALYSIS: SELECTION

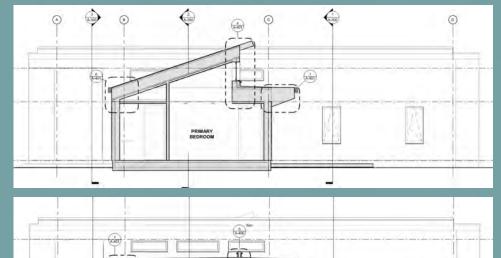
Simplification by designing for the worst case

Criteria: Thermal and Airtight Performance - Constructability - Team Familiarity - Product Availability - Embodied Carbon

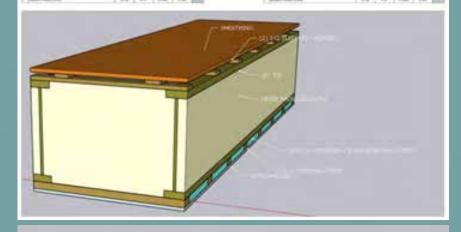
PHIUS Passive House Criteria	Split	Stacked	Flat	
ICTA UNITS ICTA I Consequent Quantity Exce Consecting Area Control Quantity Control Quantity Co		Target* Boults N/4 3,642.30 N/4 5,7 N/4 5,7 8.4 7,42 6.3 7,47 6.1 5,47 2.6 3,87 8.4 1,84	Target* Resulty N/a 5,473,30, N/a 5 N/a 5 <td< th=""></td<>	
Site energy before Solar PV	11,189.40	5,276.40	10,582.80	
Assemblies Assembly Type	Effective R-Values	Effective IP Values	Principal Circles	
Assembly Mas	R-50	B-50	Effective R-Values 9:55	
foundation Wall	8.30			
		in/a	nfa	
Seffit	R-60	8-50	n/a	
Slab on tirade	R-30	8-30	8-35	
Roaf	8-60	11-60	1.71	
Windows		U-Gines: 0.088, Frame U-Value: 0.376, SHGC: 0.35		
Dear		LI-Gass CORD, Frame LI-Vitine 2211, SHED 2,15		
	.VI saacès are veril	Located Served and Persentities	58% humidity efficience.	
Gnengy Recovery Vernilabon				
Energy Accovery Vernilabor Space Londbinning	Whole building is assumed to be served by a heat pure	nted by an SRV with a 80% sensible recovery efficiency and	9: EDP of \$ 2 % 17 Augroes 2nd CDP of # 25 % 47 degroes	
System Type: Energy Recovery VersBable Space Ebratilioning Kepst Fump Wähler Heater	Whole building is assumed to be served by a heat pure	nted by an ERV with a 80% sensible recovery efficiency and In with gracestoutor verses. The paceholders are the tobower Coving EDP is 4.79	9: EDP of \$ 2 % 17 Augroes 2nd CDP of # 25 % 47 degroes	
Energy Recovery Versilable Space Landbianing Keat Rump Water Heater	Whole building is assumed to be served by a field pur The building is currently isong a toffwer with th	nted by an ERV with a 80% sensible, recovery efficiency and to with glaceholdsr versal: The glaceholdsrs are the tolower Exering EXP is 4.79 is harowing placeholder values: COP of 3.2 and HPWH EF of s	e: COP of \$ 2 to 17 degrees and COP of a 25 to 47 degrees \$ 25. The CMW forsumation is \$.6 gaVPerson/Zmv	
Energy Accovery Vertiliakor Space Landfinning	Whole building is assumed to be served by a lead pure The building is currently ising a follower with th Total supply winners: 143 cfm Total exercit all rate. 143 cfm	ntee by an SEV with a 90% sendale recovery efficiency and o with placeholdsr wells. The placeholdsrs are the followin Coving CDP is 4.79 in following placeholder values: CDP of 3.2 and HPVIH EF of Jobal supply wit retro: 110 cfm	e: COP of \$ 2 os 17 degrees and COP of a 25 of 47 degrees 4 25. The CMW fonsionaution is 8.6 gal/Personfizm Total supply air most 119 cfm Total exhaust air rate: 119 cfm	
Energy Recovery VernSabse Space Landbioning Keat Fuerp Water Heater Room VernSadion	Whole building is assumed to be served by a lead pure The building is currently ising a follower with th Total supply winners: 143 cfm Total exercit all rate. 143 cfm	ntee by an SEV with a 90% sendale recovery efficiency and o with glacehouse value. The glashables are the follower Coving CDP is 4.79 in following placehouse values: CDP of 3.2 and HPWH EF of Todal supply at rates 219 cfm Todal calculation of value. 219 cfm	e: COP of \$ 2 os 17 degrees and COP of a 25 of 47 degrees 4 25. The CMW fonsionaution is 8.6 gal/Personfizm Total supply air most 119 cfm Total exhaust air rate: 119 cfm	
Energy Recovery VernSabse Space Landbioning Real Fuerp Water Heater Room VernSadion	Whole building is assumed to be served by a lead pure The building is currently ising a follower with th Total supply winners: 143 cfm Total exercit all rate. 143 cfm	ntee by an SEV with a 90% sendale recovery efficiency and or with placeholds' wells. The plathables are the following Coving CDP is 4.79 in following placeholder values: CDP of 3.2 and HPWH EF of Total supply at ratio 210 cm Total supply at ratio 210 cm	e: COP of \$ 2 os 17 degrees and COP of a 25 of 47 degrees 4 25. The CMW fonsionaution is 8.6 gal/Personfizm Total supply air most 119 cfm Total exhaust air rate: 119 cfm	

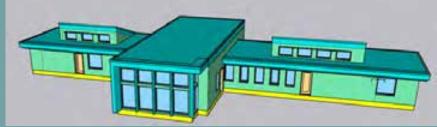

ASSEMBLIES ROOF OPTIONS


Various roof forms on the project:

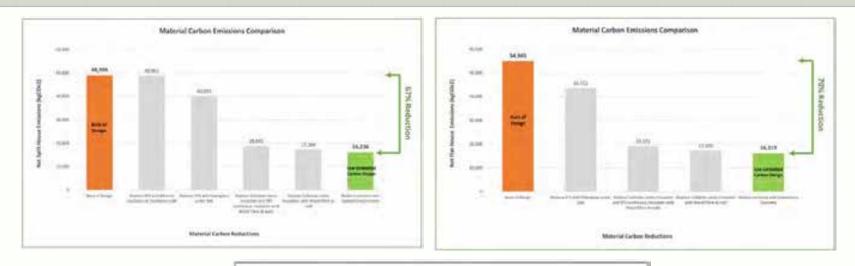

- Shed
- Gable
- Dormers
- Flat roof

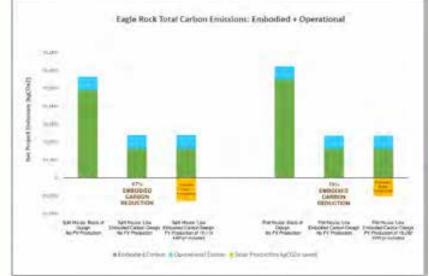
Attempt to use one roof assembly concept


Low slope vented roof is cost savings that we can leverage.



1 2x8 Stud @ 16 OC w/ Cellulose 9,02 4,04 6,54 2,47 2 2x8 Stud @ 14 OC w/ Cellulose 8.89 4.05 6.49 2.46 4 2x6 Stud @ 16 OC w/ Cellulose 8.82 4.05 6.46 2.46 4 2x6 Stud @ 16 OC w/ Cellulose 8.74 4.06 6.43 2.46 5 2x10 Stud @ 16 OC w/ Cellulose 9.15 4.03 5.6 2.47 6 2x10 Stud @ 16 OC w/ Cellulose 9.37 4.02 6.68 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 7 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 9 10 PC			Heating Demand	Cooling Demand	Heating Loa	id:	Cooling	Lood
2 2x8 Studi @ 24 OC w/ Cellulose 8.89 4.05 5.49 2.46 3 2x8 Studi @ 16 OC w/ Cellulose 8.82 4.05 6.46 2.46 4 2x8 Studi @ 16 OC w/ Cellulose 8.74 4.06 6.43 2.46 5 2x10 Studi @ 16 OC w/ Cellulose 9.36 4.03 6.5 2.47 6 2x10 Studi @ 16 OC w/ Cellulose 9.37 4.02 0.68 2.47 8 2x11 Studi @ 16 OC w/ Cellulose 9.37 4.02 0.68 2.47 8 2x11 Studi @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Studi @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 9.13 4.04 6.59 2.47 1.47 1.47 1.47 1.47 1.47 1.47 10	Targett	Wall Assembly	9.2	6.8	6.7		2.	9
1 2#5 Shud # 16 OC w/ Cellulose 8.82 4.05 6.46 2.45 4 2#5 Shud # 24 OC w/ Cellulose 8.74 4.06 6.43 2.46 5 2x10 Shud # 16 OC w/ Cellulose 9.16 4.03 6.5 2.47 6 2x10 Shud # 16 OC w/ Cellulose 9.16 4.02 6.68 2.47 6 2x10 Shud # 16 OC w/ Cellulose 9.37 4.02 6.68 2.47 8 2x11 Shud # 16 OC w/ Cellulose 9.37 4.02 6.68 2.47 8 2x11 Shud # 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Shud # 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 9 13 4.04 6.59 2.47 100 100 101<	1	2x8 Stud @ 16 OC w/ Cellulose	9.02	4.04	6.54		2.4	17
4 2x5 Stud @ 24 OC w/ Cellulose 8.74 4.06 6.43 2.46 5 2x10 Stud @ 16 OC w/ Cellulose 9.15 4.03 6.5 2.47 6 2x10 Stud @ 16 OC w/ Cellulose 9.15 4.04 6.53 2.46 7 2x11 Stud @ 16 OC w/ Cellulose 9.37 4.02 6.68 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.37 4.04 6.59 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 9 10 OC collos Cellulose tone 9.13 4.04 6.59 2.47 9 10 OC collos Cellulose tone 9.13 1.04 6.59 2.47 9 10 OC collos Cellulose tone	2	2x8 Stud @ 24 OC w/ Cellulose	8.89	4.05	6.49		2.4	16
4 2x6 Stud @ 24 OC w/ Cellulose 8.74 4.06 6.43 2.46 5 2x10 Stud @ 16 OC w/ Cellulose 9.16 4.03 6.5 2.47 6 2x10 Stud @ 16 OC w/ Cellulose 9.37 4.04 6.53 2.46 7 2x11 Stud @ 16 OC w/ Cellulose 9.37 4.02 6.68 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.37 4.04 6.59 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x10 Stud @ 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 9 10 OC 2000 Cellulose transmitter 10 OC 2000 Cellulose transmitter 9.13 10 OC 2000 Cellulose transmitter 10 OC 2000 Cellulose transmiter 10 OC 2000 Cellulose transmitter	3	Zwis Stud # 16 OC w/ Cellulose	8.82	4.05	6.46		2.4	16
6 2x10 Stud @ 24 OC w/ Cellulose 8.99 4.04 6.53 2.46 7 2x11 Stud @ 16 OC w/ Cellulose 9.37 4.02 0.68 2.47 8 2x11 Stud @ 24 OC w/ Cellulose 9.13 4.04 6.53 2.46 7 2x11 Stud @ 24 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Stud @ 24 OC w/ Cellulose 9.13 4.04 6.59 2.47 9 13 4.04 6.59 2.47 9 13 4.04 6.59 2.47 9 13 4.04 6.59 2.47 9 13 4.04 6.59 2.47 9 13 10 100 100 100 9 13 10 100 100 100 100 9 13 10 100 100 100 100 100 100 100 9 10 10 100 <th100< th=""> 100 <th100< th=""></th100<></th100<>	4		8.74	4.06	6.43		2.4	16
6 2x10 Studie 2x4 C C w/ Cellulose 8.99 4.04 6.53 2.46 7 2x11 Studie 16 OC w/ Cellulose 9.37 4.02 0.68 2.47 8 2x11 Studie 16 OC w/ Cellulose 9.13 4.04 6.59 2.47 8 2x11 Studie 24 OC w/ Cellulose 9.13 4.04 6.59 2.47 Studie 0.04 01 00 00 9.13 4.04 6.59 2.47 Studie 0.04 01 00 00 0.04 01 00 9.13 4.04 6.59 2.47 Studie 0.04 01 000 0.04 01 000 0.04 01 000 0.04 01<	5	2x10 Stud @ 16 OC w/ Cellulose	9.16	4.03	6.6	_	2.4	47
A 2x11 Studi @ 24 OC w/ Cellulone 9.13 4.04 6.59 2.47 Interference	6		8.99	4.04	6.53		2.4	16
A 2x11 / Stud @ 24 OC w/ Cellulose 9.13 4.04 6.59 2.47 Martin Landolf Martin Cellulose 8.07 % Martin Cellulose Martin Cellulose 9.13 M.04 6.59 2.47 Martin Cellulose Martin Cellulose 8.07 % Martin Cellulose	7	2x1./ Stud @ 15 OC w/ Celluloue	9.37	4.02	6.68		2.4	17
		 D.V. Alaberticki Science and Science 	9.13	4.04	6.59		2.4	17
			1444		Nar-a C_DINK Calcing to	adalar, bir a		
Description Dirt	Sent reasons for the set			National Annual An			I	
Interfactor L0 L0 <thl0< th=""> L0 L0</thl0<>	. martin	Itter in ale and a			H	in air	Indian	-
Inter-training Add		the second s						
Andre-Max Encoding & Marcing & Ma		and a first of the second s	the second se					
March 19 (1994) Annual Annual III (1974) Annual				Statistics in the second second	and the second se		and the second	
	10-acrit 10		1000	8 (mage 4 m		146 140	0.000	1.000
	Days & American	0.0 0.0 0.00 0.00						



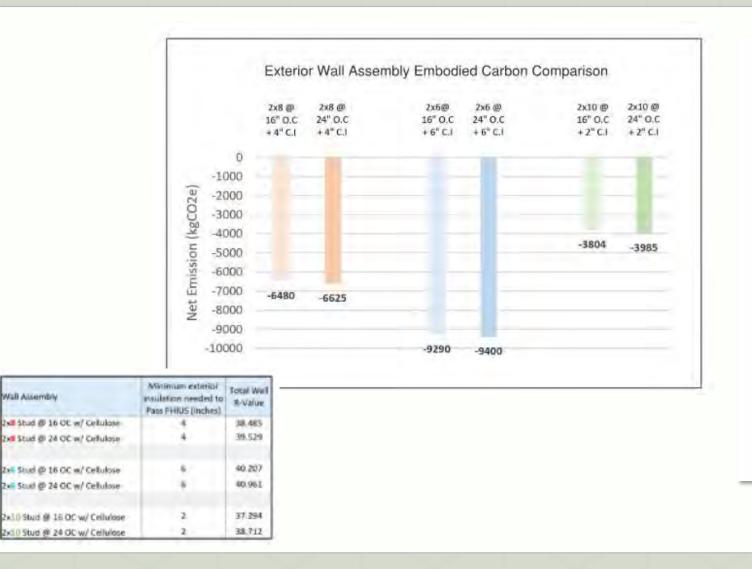


ASSEMBLIES OPTIONS AND ANALYSIS: EMBODIED CARBON

Information as **Power** and **Leverage**.

Early iterative studies of Embodied Carbon research and analysis led to new opportunities and added project goals.

ASSEMBLIES OPTIONS AND ANALYSIS: EMBODIED CARBON

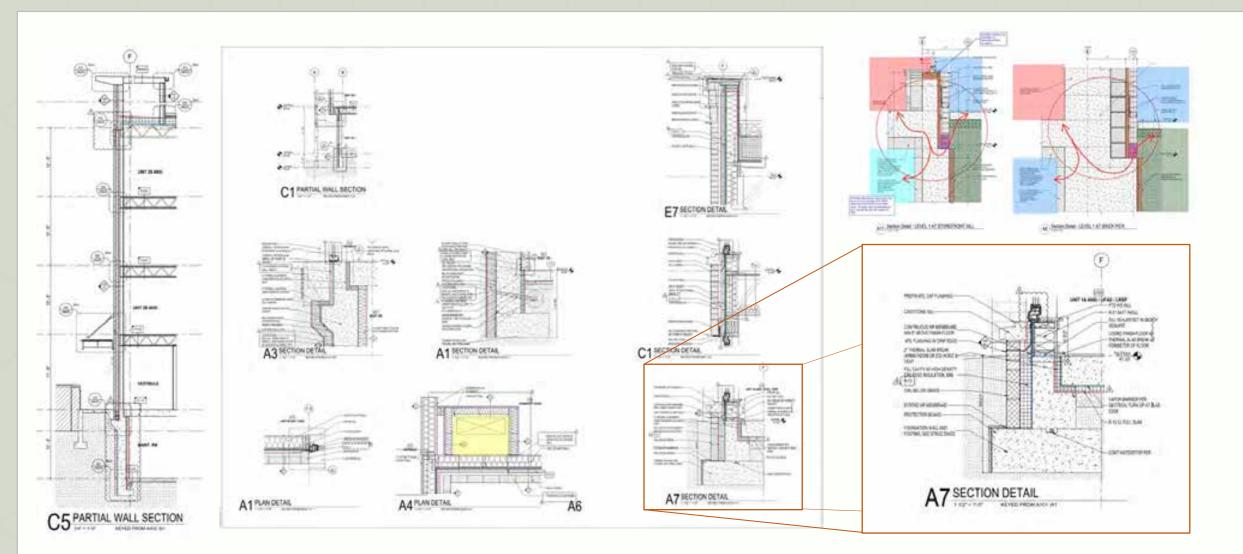

Information as **Power** and **Leverage**.

2

5

6

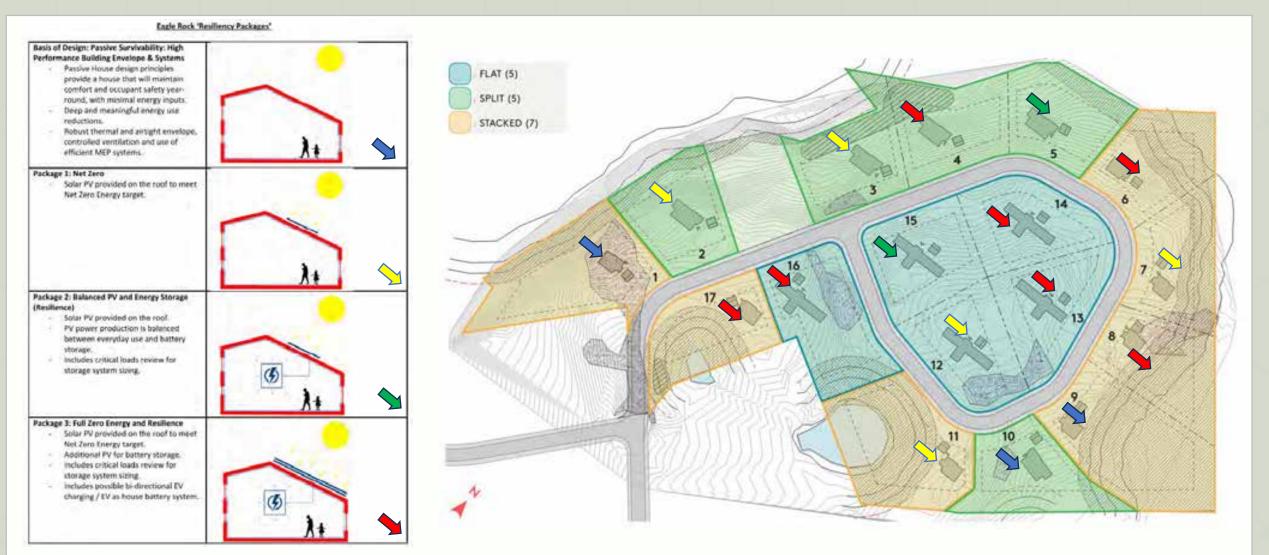
Early iterative studies of Embodied Carbon research and analysis led to new opportunities and added project goals.



	Raincon of Longitud Labor, Solution, Longitu
11+	alter Sammary Iolinaria, momenalism fitzene to festion's gedener on totang the anticoded cadeas al contrast. The me of the desarrows is to provide percent patience and information is suggest. The design and contrastance is a chieved a totane resource cadea bulgers.
1117	It has been written identif the argumpy of velocing wederafted surface in furthing surfacility. Genorehin, being a far und mannal that is anyong instructure to consolutioners, bears a significant performant of the total analysis of on both the functions. The particular side has been associated and the size of the total analysis of the total analysis of an analysis of anisotres. Size the "Additional Responses" technic for terms in anyoffice and the total analysis of a valuation of anisotres. Size the "Additional Responses" technic for terms in anyoffice and the distance of the anisotres and anyong control and analysis of the size of the control of a valuation of terms of the response of anisotres.
	nerse. Teshedind Galani', "Salasi", "Gil" and "Sanai Saraving Recented" or "Sala" are generally used chargesing the apoet the decorrect.
	e presente y a altra a part in a strandord inspecty, part present trans and star of a serie the present spatial agreed savels of part for cards of the maximum and guidance disco.
***	annumbel Coldense
	adarar wood here shad be concernd by the dirage mean and/or promotion in an Ayr proper aparties and in design county your to explore exclusion.
(the)	triad Specific States Tead regarding active the decays income care (are in to association can be carepted where it is not reasoning on a close carbon carbon careful as available.
	4.1. Examining program to the based on a provide a set of the s
	1.2 Attentional International Constraints in the end of the end
	1.5 Usingly to induce concerns one When exemption more the advance, king this comparison is appropriately to induce the anizone of transmital advance an induction appointer, and approxy the lowest wanging concerns publication. This will be fixed advanced with 5 kill acquark from the Smutchers Engineering struct, as well as comprehension bareful commit from their structure of the structure. Engineering struct, as well as comprehension bareful commit from their structure of the structure.
(hai	alternet war (1990-001) data
-	Committee and an internation of the second s

THERMAL BRIDGING ANALYSIS

Varying house types and topography = Unique conditions for each house => Quick analysis of thermal bridge worst case scenarios.


Design team buy-in meant early conversations with the architectural and structural teams.

RESILIENCE CONCEPTS

- CPHC led conversation potential for 'Resilience Upgrade' Packages.
- Can be an easy add-on for the developer 3 solar/battery studies, 17 possible upgrades.

What makes this community unique

What ties these houses together?

How is this place marketable?

What makes this community unique?

What ties these houses together?

How is this place marketable?

SHARED DESIGN AESTHETIC USONION CONCEPT

What makes this community unique?

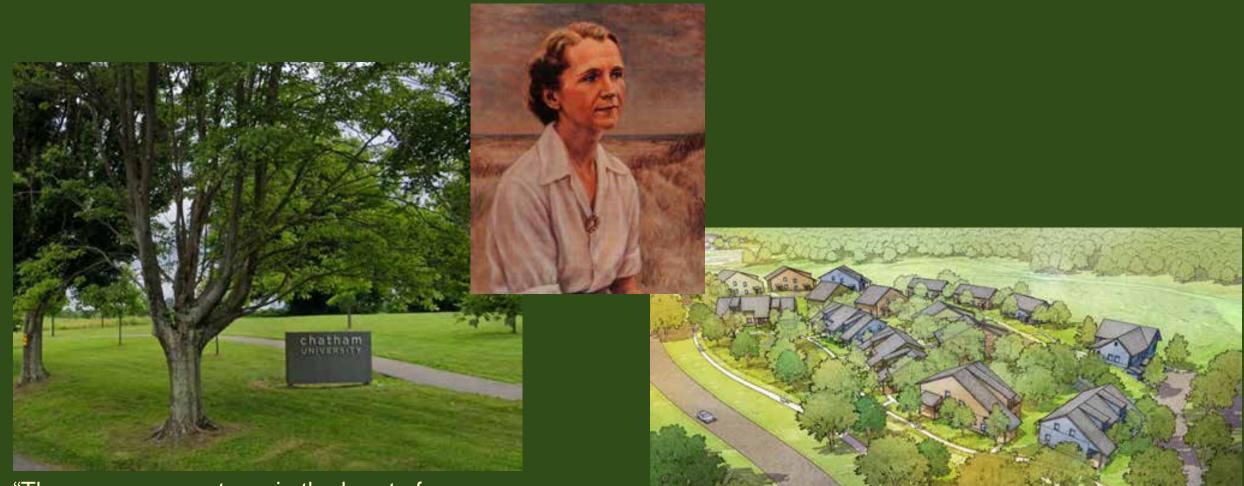
What ties these houses together?

How is this place marketable?

SHARED DESIGN AESTHETIC USONION CONCEPT LOW-IMPACT ETHIC CONSERVATION FIRST – DO NO HARM EMBODIED CARBON REDUCTION

What makes this community unique? What ties these houses together? How is this place marketable?

SHARED DESIGN AESTHETIC USONION CONCEPT LOW-IMPACT ETHIC CONSERVATION FIRST – DO NO HARM EMBODIED CARBON REDUCTION HEALTH AND COMFORT RESILIENT HOMES, RESILIENT COMMUNITY SHARED RESOURCES SHARED PURPOSE


MICHAEL HINDLE CPHC – Owner, Principal michael@passivetopositive.com 240-431-1281

ANDY ALLWINE, AIA, CPHC andy@passivetopositive.com

"There was once a town in the heart of America where all life seemed to live in harmony with its surroundings."

Joe Skibba, Depiction LLC

Rachel Carson EcoVillage

Our design and construction team is experienced in integrated high-performance design for sustainability.

EcoVillage Design Team

evolveEA, architecture Fourth River Workers Guild, ecological construction Larry Weaner Landscape Associates, natural landscape cultivation Civil and Environmental Consultants, engineering AUROS Group, CPHD/C, high performance building designers

Integrated Design Process

A multi-disciplinary collaborative process that encompasses design, construction, operation, and occupancy of a building over its lifecycle.

The best method for realizing high performance buildings and sustainable communities within a budget.

evolveEA, architecture

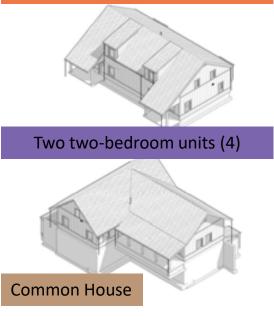
Fourth River Workers Guild, ecological construction

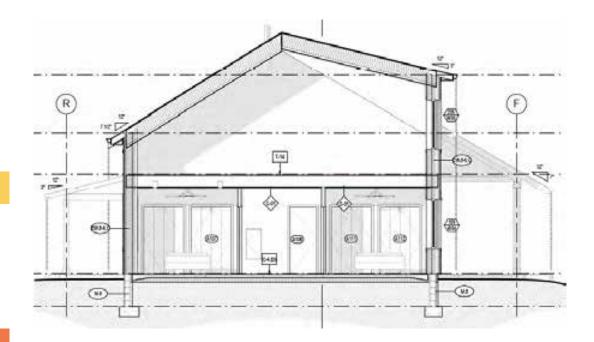
Civil & Environmental Consultants, civil engineering

AUROS Group, CPHD/C, building performance

Stefani Danes FAIA, project manager

35 homeownership units and a common house


Four building types



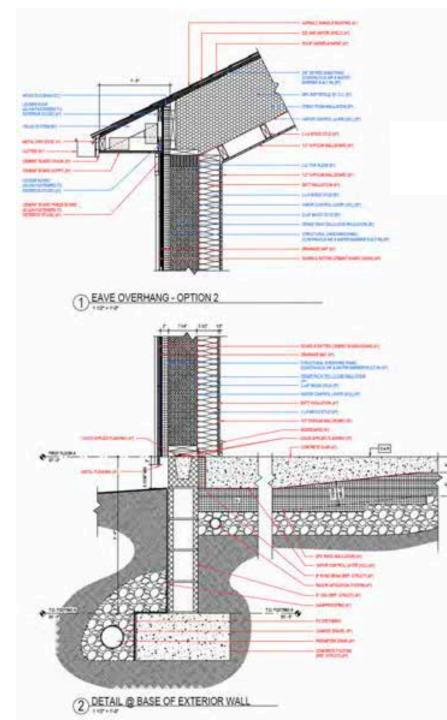
Three one-bedroom units (3)

Two two-bedroom units (8)

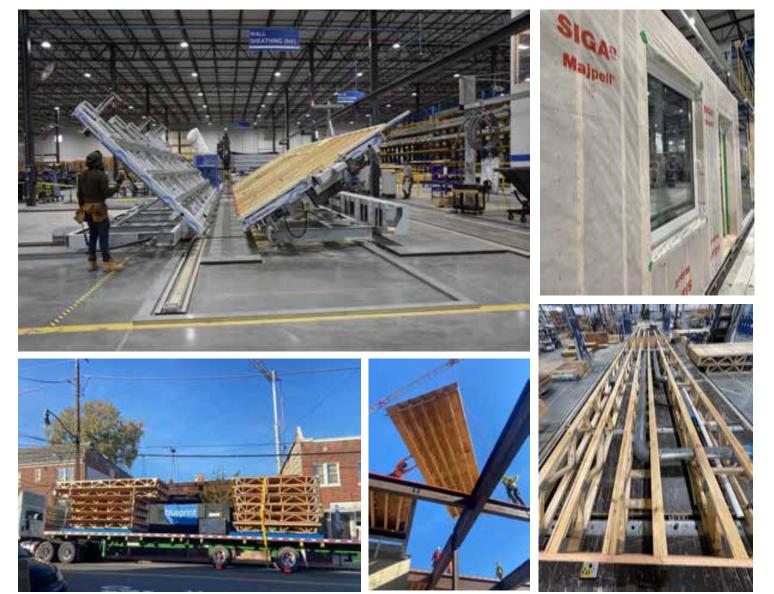
Energy modeling was integrated into the design process. Starting with early schematics, each design iteration was tested and costed before proceeding to the next.

Hygrothermal modeling began during design development and guided construction detailing.

PHIUS


Certification

Passive House (PHIUS) Criteria



	Phius #	Units	Phase	Azimuth	H. Demand	C. Demand	H. Load	C. Load	Source
Building X				Targets:	8	5.2	5.5	2	5425
X1	2358	X11	Design Cert	210	8.05	2.28	5.06	1.35	4907
		X12							
	0004	X13	Desire Ost	104		2 22	4.00	4 75	4070
X2 (prototype)	2064	X21 X22	Design Cert	181	7.33	3.32	4.93	1.75	4878
		X23							
X3	2359	X31	Design Cert	128	7.97	2	4.93	1.24	4870
		X32	, , , , , , , , , , , , , , , , , , ,						
		X33							
Building Y				Targets:	8.4	5.6	5.9	2.1	5175
Y1 (prototype)	2062	Y11 Y12	Design Cert		7.8	2.02	5.08	1.6	3793
Y2	2360	Y21	Design Cert	232	8.39	1.31	5.17	1.25	3791
12	2000	Y22	Doolgin Cont	252	0.00	1.51	5.17	1.25	5751
Y3	2361	Y31	Design Cert	232	8.39	1.22	5.16	1.19	3783
		Y32							
Y4	2362	Y41	Design Cert	174	8.38	1.45	5.18	1.29	3800
Y5	2363	Y42 Y51	Design Cert	254	8.39	1.16	5.16	1.14	3777
15	2303	Y52	Design Cen	204	0.59	1.10	5.10	1.14	5///
Y6	2364	Y61	Design Cert	238	8.09	1.3	5.11	1.25	3764
		Y62							
Y7	2365	Y71	Design Cert	290	8.24	1.24	5.13	1.19	3770
Vo	0000	Y72	Design Cart	200	0.00	4 22	F 00	4.40	2757
Y8	2366	Y81 Y82	Design Cert	266	8.09	1.22	5.09	1.19	3757
Building Z		102		Targets:	8.3	5.6	5.9	2.1	4675
Z1	2367	Z11	Design Cert	185	7.67	1.94	5.25	1.63	3672
		Z12							
Z2	2368	Z21	Design Cert	203	7.72	1.95	5.26	1.64	3677
72 (prototype)	2062	Z22	Design Cart		דר ד	2.45	F 02	1 04	2660
Z3 (prototype)	2063	Z31 Z32	Design Cert		7.27	2.45	5.02	1.84	3669
Z4	2369	Z32 Z41	Design Cert	262	7.78	2.58	5.33	1.89	3726
	-	Z42	J	-					

The buildings are panelized by Blueprint Robotics in their factory in Baltimore MD with windows, ductwork, pipes, and wiring.

Images courtesy of Blueprint Robotics

Risk Reduction

Single point of contact for the most demanding areas of the project's scope.

Fully coordinated interfaces and conflict resolution, including rough and finish, for:

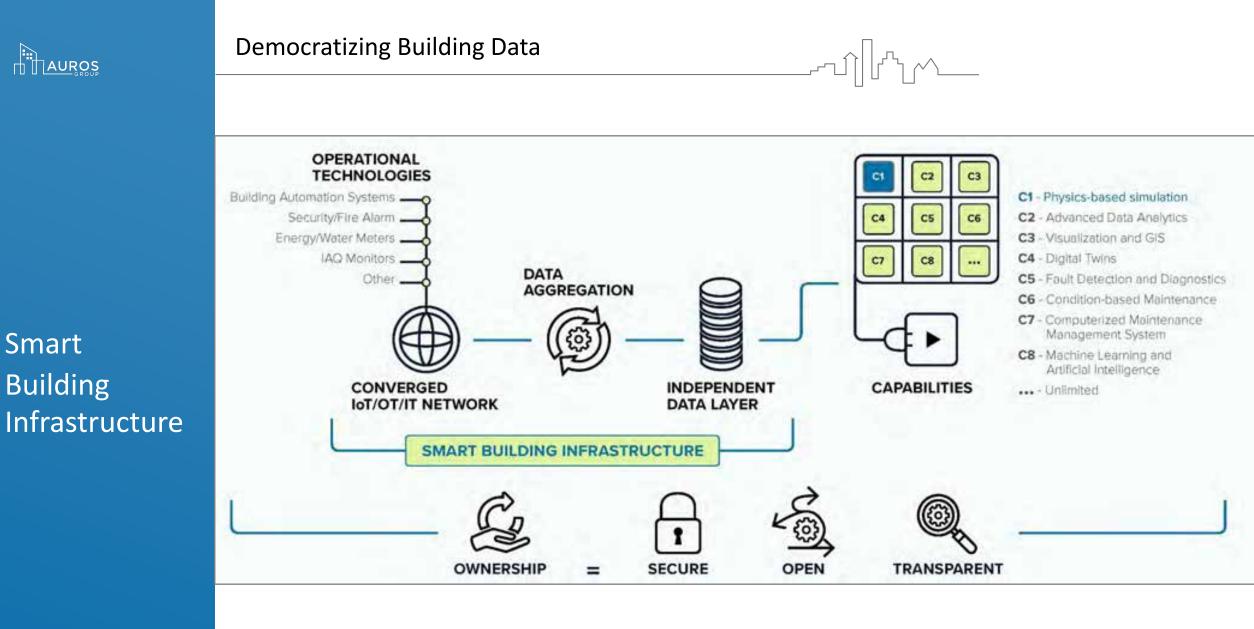
- Framing and Envelope
- Structural
- Mechanical
- Plumbing
- Electrical
- Fire Protection

High Quality

- Factory installed windows/doors.
- Precision manufacturing combining CNC machinery and skilled craftsmanship.
- Cross Laminated Timber to replace traditional CMU cores
- Standard default to high quality materials
- QA/QC for PHI/PHIUS details, framing, and MEP

Sustainability

- Zero wood waste to landfills
- Material optimization
- Coordination and clash detection reduce change orders


Project is constructed directly from 3D model

Images courtesy of Blueprint Robotics

Offsite Fabrication

Controlling Your Building Data

Smart Building Infrastructure

Power Meter

Natural Gas Meter

Potable Water Meter

Indoor Air Quality Monitor

Aggregate Data

JACE Devices

Manage Data

Time-Series Data Intake & Normalization

Data Storage Historian

Unified User Interface -Visualization & GIS

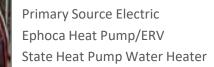
Use Cases

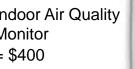
Data Analytics -Decarbonization & CO2e Accounting

Operationalize Physics-based Simulation -Monitoring-based Commissioning -Whole-Building Decarbonization Plan

Minimum Viable Product

JACE Device = \$1,200


Smart Building Infrastructure



Power Meter = \$250

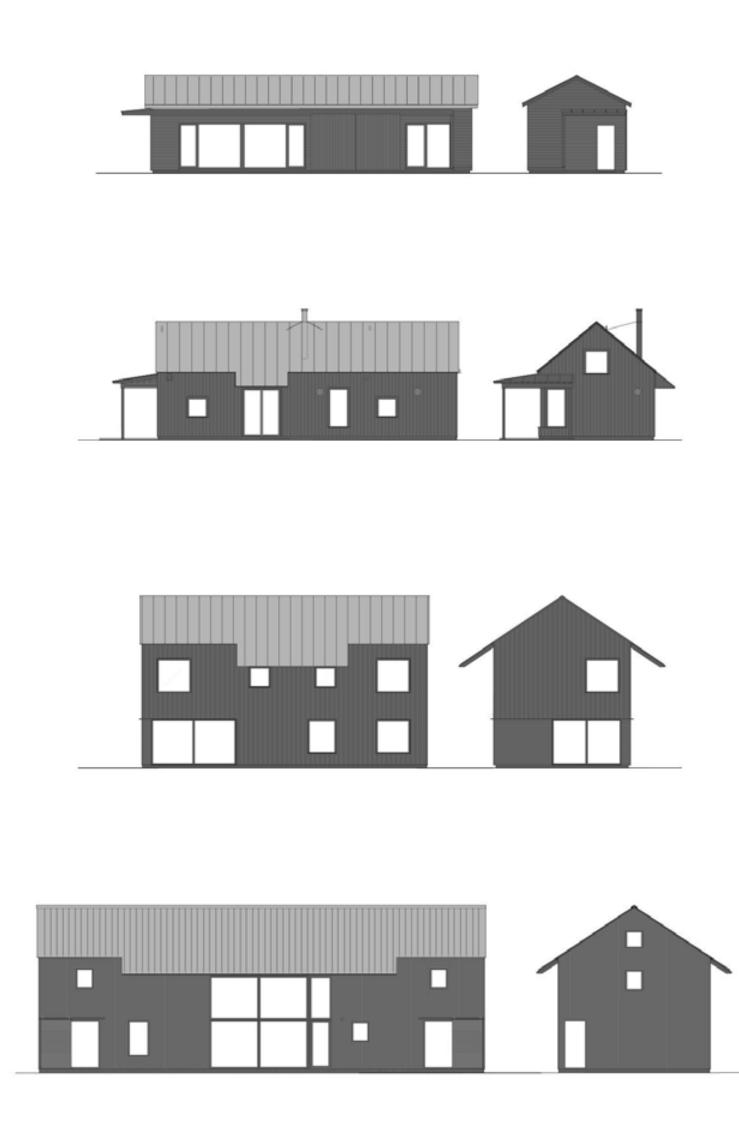
Indoor Air Quality Monitor = \$400

For more information about Rachel Carson EcoVillage, please contact us.

Stefani Danes sdanes@cmu.edu 412-441-2948 www.RachelCarsonEcoVillage.org

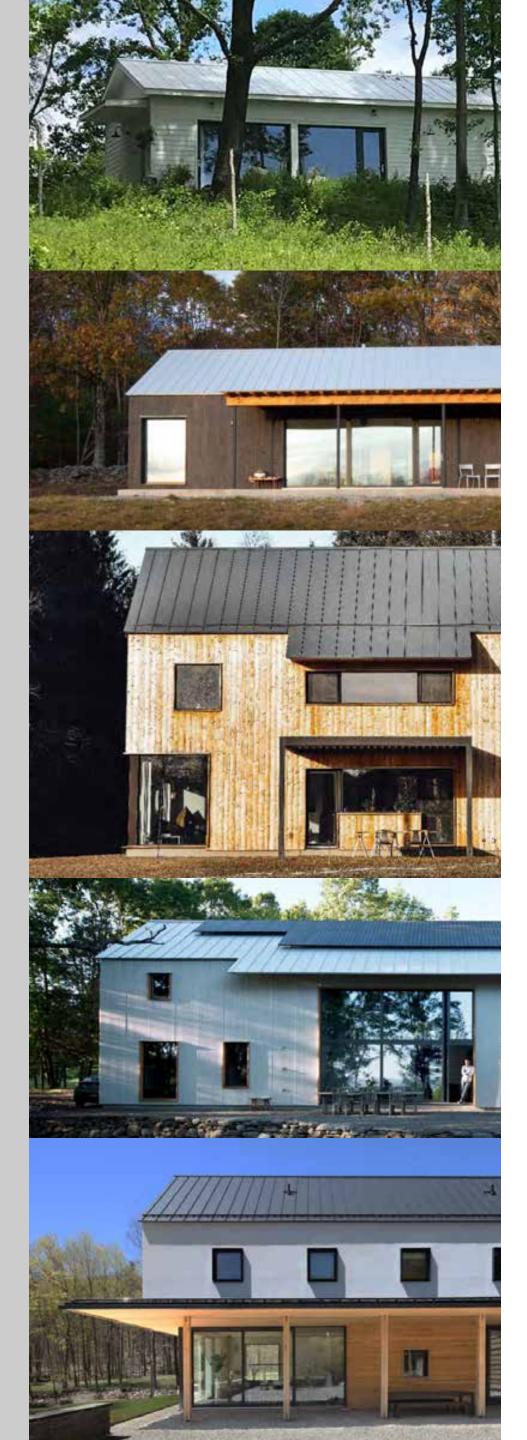
Matt Bowers Matthew.bowers@aurosgroup.com 412.506.6777 www.aurosgroup.com

Prescriptive Pathways

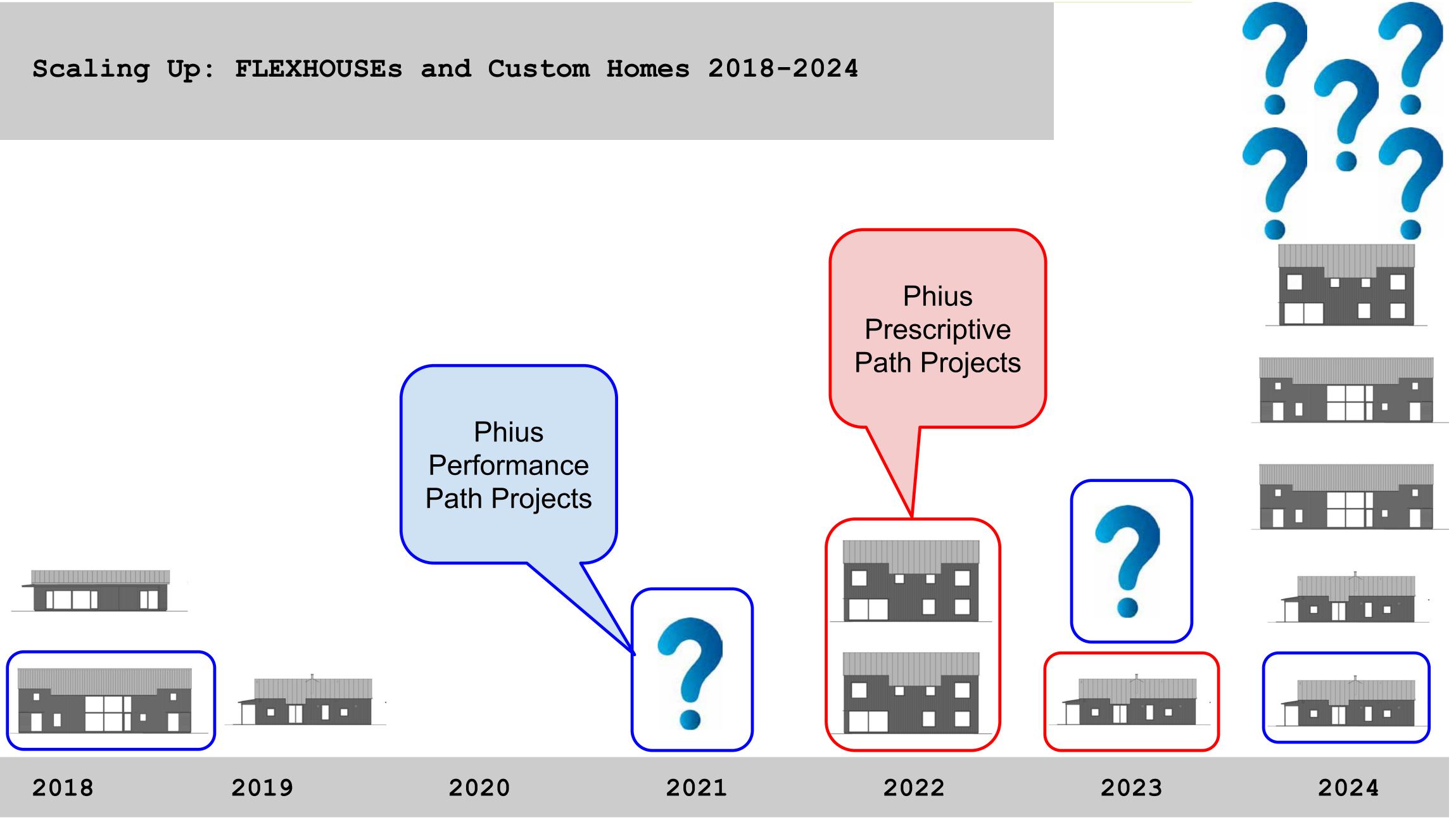

Scaling Up Single Family Residential Design in New York's Hudson Valley

FLEXHOUSE I 1000 sf 1 bedroom, 1 full bath

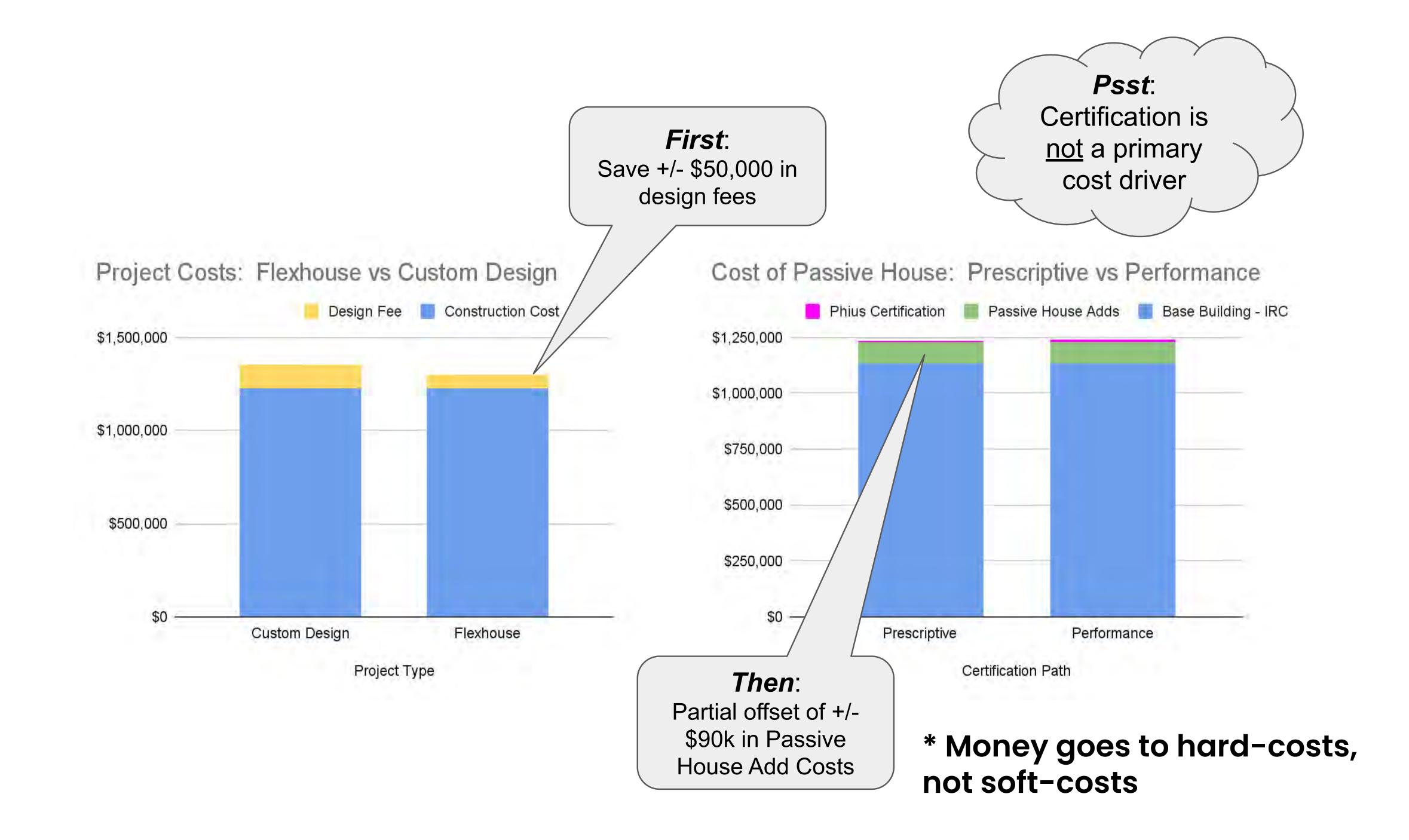
FLEXHOUSE II


1200 sf 2 bedrooms with sleeping loft, 1 full bath

FLEXHOUSE III 2400 sf 3-4 bedrooms, 3 full baths


2880 sf 3-4 bedrooms with sleeping loft, 3 full baths

Custom Design


FLEXHOUSE IV

Phius CORE Prescriptive 2021 Snapshot

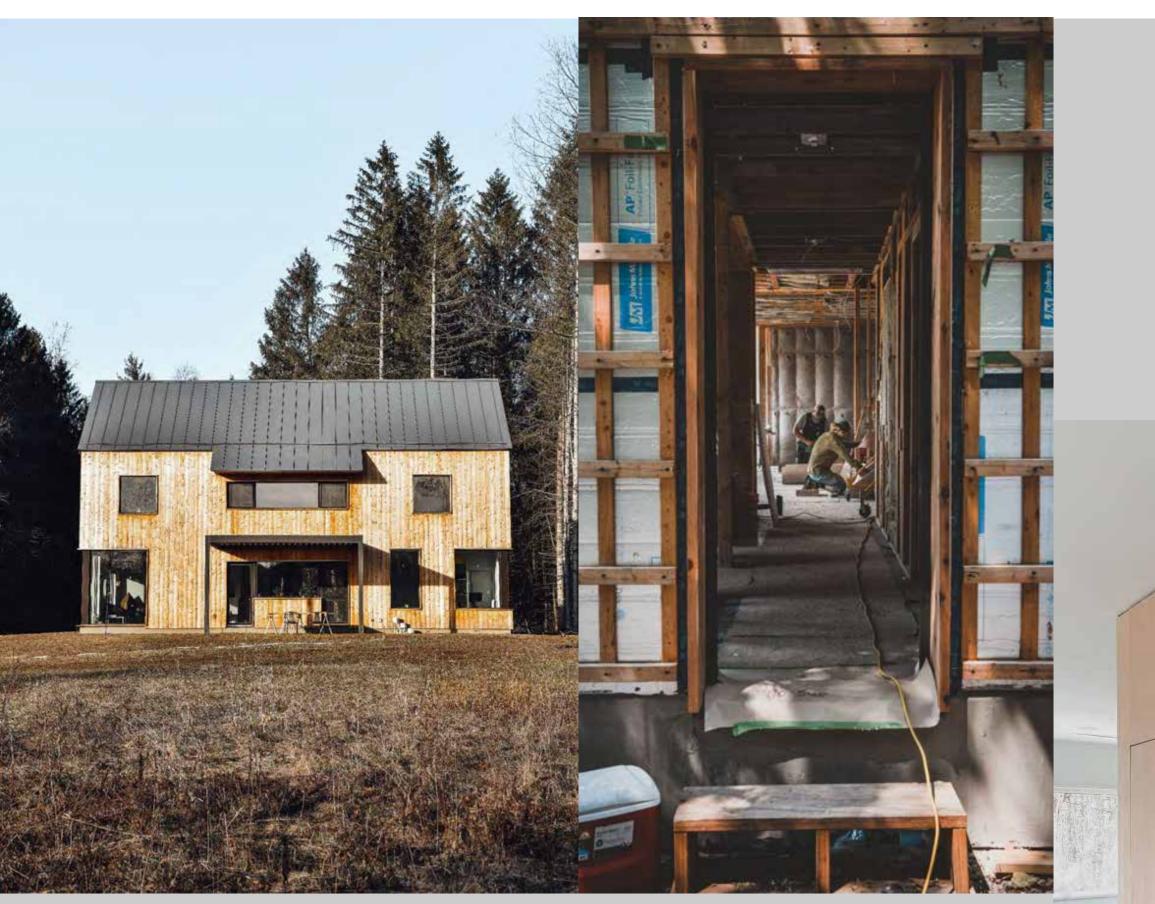
		State	NEW	YORK
		City		T FIELD
		ASHRAE (169-2021) Climate Zone		5A
		iCFA* (ft ²)		287
				3
		Number of Bedrooms*		
		Number of Stories	s ducelling unit	2
1 0	General	pe	r dwelling unit	
1.1.2	iCFA divided by Number of Bedrooms	Maximum Limit	900	ft ²
	(Calculated Value based on Inputs)	OK, Meets Limit	762	ft ²
3 (Compactness			
3.1.1	Envelope Area	Maximum	6548	ft ²
-	(Maximum Envelope to Floor Area Ratio)		2.86	
4 \$	Solar Protection			
4.1.1	Whole Window SHGC	Maximum	NR	
4.4.1	Projection Factor for Fixed Overhangs	Minimum	NR	
5 1	Thermal Enclosure			
	Fenestration / Openings	Maximum Whole U-Value	0.17	(BTU/h.ft ² .°F
5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	41	(ft ² .°F.h/BTU
5.1.1c	Roofs / Ceilings	Minimum Effective R-Value	72	(ft ² .°F.h/BTU
5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	21	(ft ² .°F.h/BTU
5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Value	26	(ft ² .°F.h/BTU
6 1	Moisture Risk Limitation			
6.2.1	Fenestration Condensation Resistance	Minimum	63%	
7 N	Mechanical Ventilation			
7.2.1	Sensible Recovery Efficiency, Heating Mode	Minimum	80%	
7.2.2	Total Recovery Efficiency, Cooling Mode	Minimum	NR	
7.2.5	Total Length of Fresh Air Ducts to Outside	Maximum	27	ft 🚽
8 N	Mechanical Systems			
	Select System Type			-
8.2.1	Air Source Heat Pump	Minimum COP @ 5F	1.8	

Basten Farm North - Flexhouse III

Phius CORE Prescriptive 2021 Snapshot

Input or select data in teal cells NEW YORK State STEWART FIELD City ASHRAE (169-2021) Climate Zone 5A iCFA* (ft2) 2094 3 Number of Bedrooms* Number of Stories 2 *per dwelling unit General 1.1.2 iCFA divided by Number of Bedrooms ft2 900 Maximum Limit ft² (Calculated Value based on Inputs) 698 OK, Meets Limit Compactness 3 ft² 6180 3.1.1 Envelope Area Maximum 2.95 (Maximum Envelope to Floor Area Ratio) 4 Solar Protection 4.1.1 Whole Window SHGC NR Maximum NR 4.4.1 Projection Factor for Fixed Overhangs Minimum 5 Thermal Enclosure (BTU/h.ft².°F) 5.1.1a Fenestration / Openings Maximum Whole U-Value 0.17 5.1.1b Walls & Overhang Floors - Effective R-value (ft².°F.h/BTU) 41 Minimum Effective R-Value 5.1.1c Roofs / Ceilings (ft².°F.h/BTU) 72 Minimum Effective R-Value Whole Slab Foundations, Below-Grade Walls, Floors 5.1.1d (ft².°F.h/BTU) 21 Minimum Effective R-Value of Conditioned Basements & Crawl Spaces Ceilings of Unconditioned Basements or Crawl (ft2.°F.h/BTU) 5.1.1e 26 Minimum Effective R-Value Spaces & Pier and Beam Floors Moisture Risk Limitation 6 6.2.1 Fenestration Condensation Resistance 63% Minimum Mechanical Ventilation 7 7.2.1 Sensible Recovery Efficiency, Heating Mode 80% Minimum NR Total Recovery Efficiency, Cooling Mode 7.2.2 Minimum Total Length of Fresh Air Ducts to Outside 7.2.5 26 Maximum 8 Mechanical Systems Select System Type Minimum COP @ 5F 1.8 Air Source Heat Pump 8.2.1 15.0 Minimum SEER

Basten Farm South - Flexhouse III


Basten Farm North - Flexhouse III

Basten Farm South - Flexhouse III

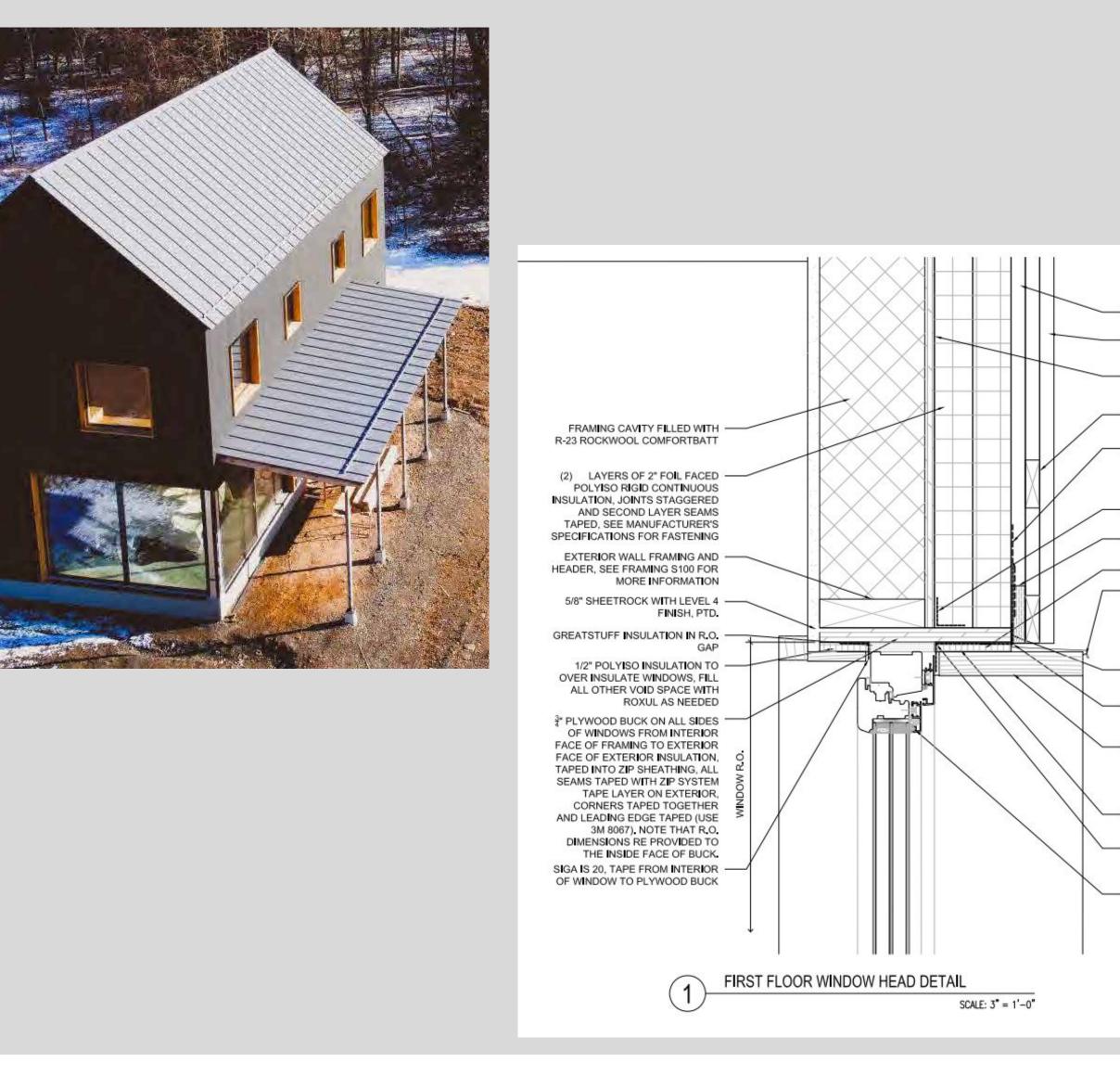
Stone Ridge, NY

Basten Farm North - Flexhouse II

Climate Zone 5A iCFA 2,287 ft2

Prescriptive Path Actual Target 6,550 ft2 6,424 ft2 Building Enclosure Area 18% Window-to-Wall Ratio (WWR) ≤18% Fenestration U-Value (max) 0.17 0.165 Exterior Walls R-Value (min)41 43 Roof/ceiling R-Value (min)72Slab R-Value (min)22 73 52 22 ERV Efficiency ERV total duct length 468 W/cfm 720 W/cfm 20 ft 27 ft Heat Pump Efficiency (min) 1.75 COP @ 5F 1.66 COP 17.8 15 SEER

Basten Farm South - Flexhouse III


Climate Zone 5A iCFA 2,094 ft2

Prescriptive Path	Target	Actual
Building Enclosure Area	6,180 ft2	5,830 ft2
Window-to-Wall Ratio (WWR)	≤18%	18%
Fenestration U-Value (max)	0.17	0.17
Exterior Walls R-Value (min)	44	43
Roof/ceiling R-Value (min)	74	76.5
Slab R-Value (min)	22	52
ERV Efficiency (max)	720 W/cfm	468 W/cfm
ERV total duct length	26 ft	20 ft
Heat Pump Efficiency (min)	1.75 COP @ 5F	1.69 COP
	15 SEER	18.4

Prescriptive Certification - Design Stress Points

Air Source Heat Pump Efficiency

Minimum 1.75 COP at 5F **Problem:** Hyperheat models' efficiency too low, 1.66 & 1.69 COP at 5F Solution: Waiver from Phius was necessary

Exterior Wall R-value

Minimum R-44 for Basten Farm North, Checklist V2.1 Minimum R-41 for Basten Farm South, Checklist V2.6 **Problem**: Dense-pack cellulose insulation resulted in R-43 wall

Solution: Prescriptive Path offers UA Alternative

Net Zero Energy - Sizing Renewables

Problem: Prescriptive Path does not generate an estimate of annual electrical usage

Solution: Recommend full coverage on south-facing roof slopes

Glazing Area & Orientation

Problem: Designs exceed Prescriptive limit of total glazing area - 33-37% vs 15% max

Solution: Adequate Exposure Diversity (AED) alternative compliance

Limited Design Optimization

Problem: Prescriptive Path does not reward airtightness above baseline (0.04 cfm/ft2)

Performance Path allows envelope and/or HVAC modifications correlated with actual airtightness

1X3 VERTICAL FURRING STRIP @ 16" O.C., TYP. " SIDING, STAIN COLOR TO BE

DETERMINED ZIP SHEATHING, ALL SEAMS TAPED WITH ZIP SYSTEM TAPE

1X3 HORIZ, FURRING STRIP @ 16" O.C., TYP.

TAPE LAP FROM EXTERIOR FACE OF POLYISO OVER 3" PLYWOOD BUCK WITH 3M 8067

3M 8067 TAPE

CORAVENT SV-5 RAIN SCREEN

" XPS INSULATION

SITE BENT GALVANIZED HEAD FLASHING, SHIM AS NEEDED TO SLOPE AWAY FROM BUILDING. FLASHING TO EXTEND # BEYOND LENGTH OF HEAD TRIM AT EARS

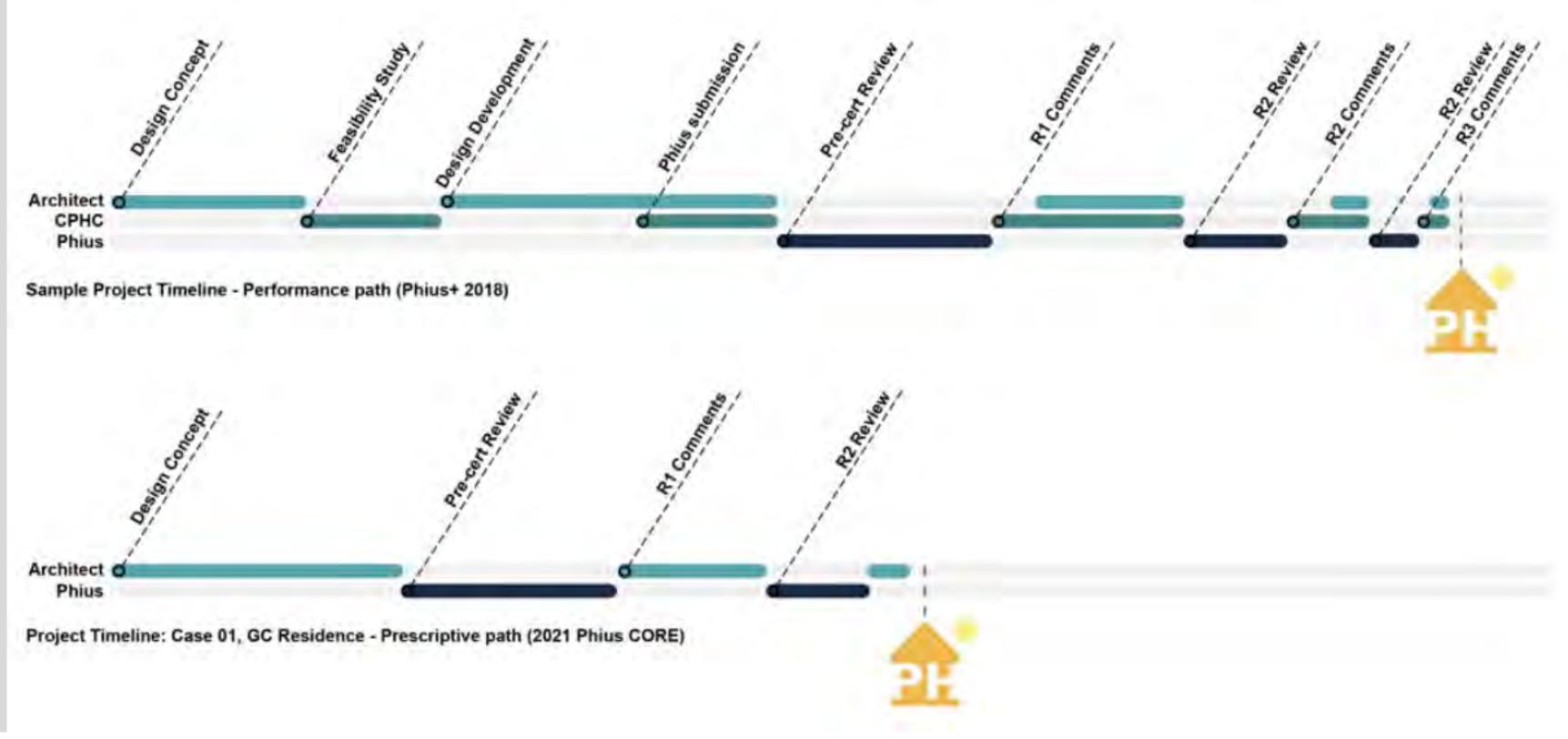
CAULK BETWEEN FLASHING AND EXTERIOR FACE OF TRIM

3M 8067, SEE NOTE ABOUT BUCK INSTALLATION AND TAPING

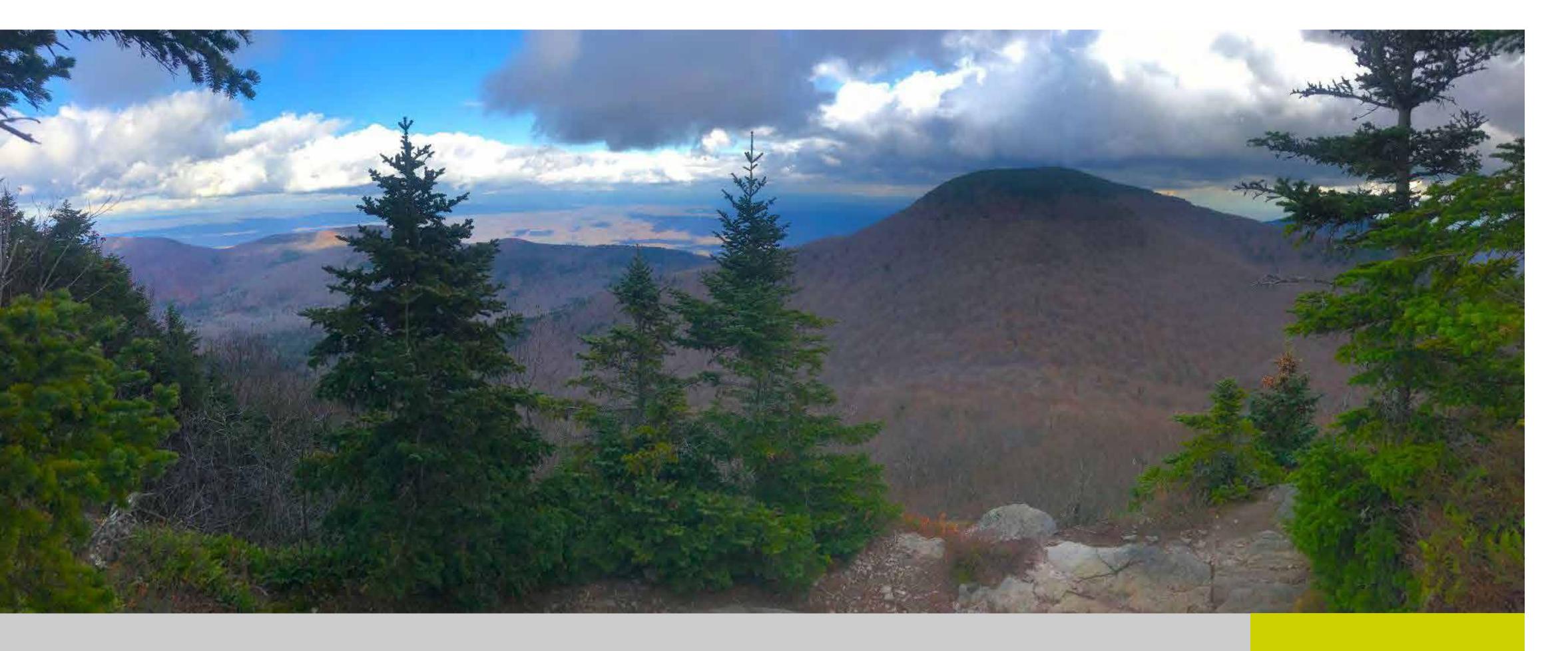
1¹/₄" X 8 CEDAR RETURN, FINISHED WITH PENOFIN RED ABEL ON ALL SIX SIDES, CAULK JOINT TO EXTERIOR CLADDING OF WINDOW

XPS INSULATION TO OVER **NSULATE WINDOWS**

SIGA FENTRUM IS 2, TAPE FROM EXTERIOR OF WINDOW TO PLYWOOD BUCK

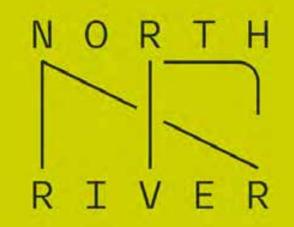

MSORA CLAD WINDOW ALUMINUM CLAD EXTERIOR, WOOD INTERIOR ALIGN OUTSIDE F.O.WINDOW

Toolkit for Scaling Up Single Family Passive House


- Prescriptive Path Certification
- Patternbook design offerings
- Standard construction methods & materials
- Simplified HVAC
- Workforce training/Subcontractor buy-in

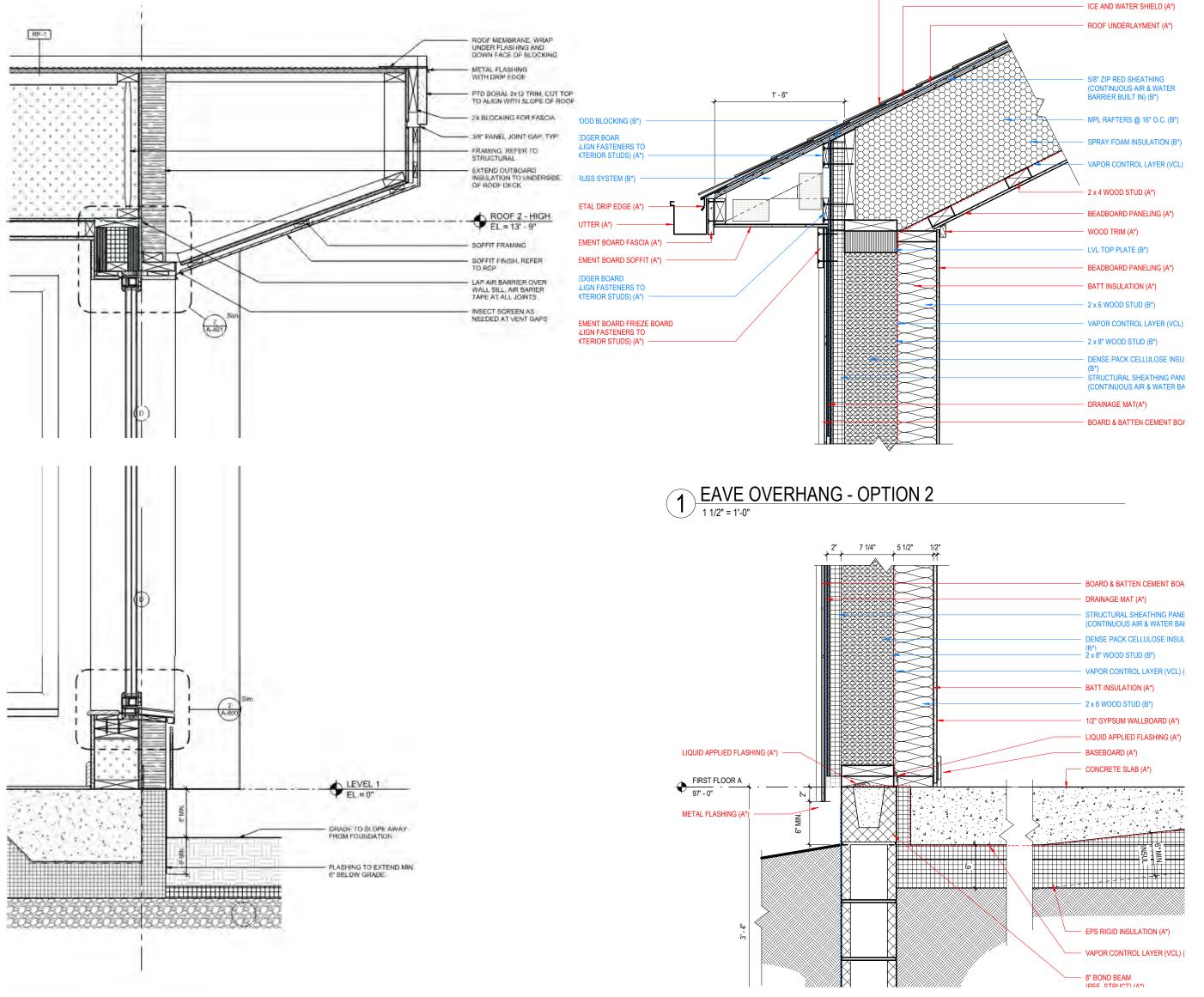
Passive House Wish List

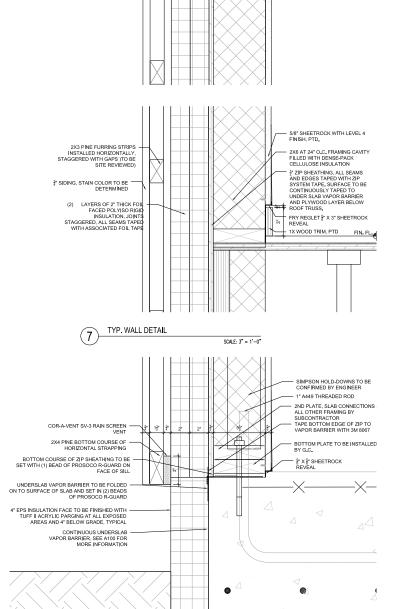
- More Phius Raters!
- Restoration of incentive funding for single family
- Homeowner buy-in for ductless mini-splits
- Building code support for Passive House
- Green Appraisals
- Smaller mini-splits
- North American window manufacturers

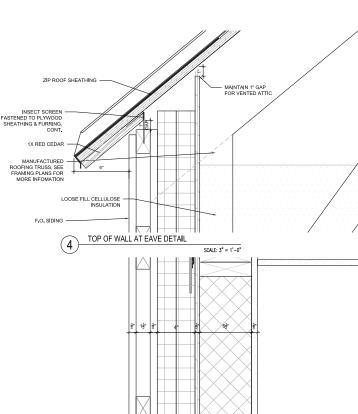

Thank you.

John Loercher, CPHC

John@NE-Projects.com, JLoercher@Phius.org


Stephanie Bassler, RA, CPHC stephanie@bassler-architect.com


Eagle Rock Stoughton, MA


Rachel Carson Ecovillage Gibsonia, PA

Flex House Various sites, NY

	ICE AND WATER SHIELD (A^)
	ROOF UNDERLAYMENT (A*)
	5/8" ZIP RED SHEATHING (CONTINUOUS AIR & WATER BARRIER BUILT IN) (B*)
	MPL RAFTERS @ 16" O.C. (B*)
	SPRAY FOAM INSULATION (B*)
	VAPOR CONTROL LAYER (VCL)
	2 x 4 WOOD STUD (A*)
	BEADBOARD PANELING (A*)
	WOOD TRIM (A*)
₹	LVL TOP PLATE (B*)
	BEADBOARD PANELING (A*)
₫	BATT INSULATION (A*)
	2 x 6 WOOD STUD (B*)
$\overline{\mathbf{A}}$	VAPOR CONTROL LAYER (VCL)
\preceq	
\square	2 x 8" WOOD STUD (B*)
\prec	DENSE PACK CELLULOSE INSU
7	(B*) STRUCTURAL SHEATHING PANI (CONTINUOUS AIR & WATER BA
\prec	DRAINAGE MAT(A*)
\square	
\rightarrow	BOARD & BATTEN CEMENT BO/
\leq	

- ASPHALT SHINGLE ROOFING (A

