BUILDINGENERGY BOSTON

Electrification of Domestic Hot Water in Multifamily Buildings

Daniel Perez (Petersen Engineering) James Petersen (Petersen Engineering)

Curated by Keirstan Field and Tom Chase

Northeast Sustainable Energy Association (NESEA) March 29, 2023

Learning Objectives

- 1. Classify the options for electric DHW heating systems in large multifamily buildings.
- 2. Evaluate the current opportunities and obstacles to installing central ASHP DHW plants in existing and new construction multifamily projects.
- 3. Identify space planning considerations for designing central ASHP DHW plants and for incorporating provisions for future conversion.
- 4. Assess a multifamily project's feasibility in achieving net-zero carbon emissions by using a central ASHP system as their source for DHW.

Design Case Study – Leland House

Description – Leland House

Phius 2 Performance Criteria	2 021 Calculator	r v3.3
Space Condition	ing Criteria	
Annual Heating Demand	5.1	kBtu/ft²yr
Annual Cooling Demand	6.7	kBtu/ft²yr
Peak Heating Load	4.0	Btu/ft ² hr
Peak Cooling Load	3.0	Btu/ft ² hr
Source Energy	/ Criteria	
Phius CORE	5500	kWh/person.yr
	Phius 2 Performance Criteria Space Condition Annual Heating Demand Annual Cooling Demand Peak Heating Load Peak Cooling Load	Phius 2021 Performance Criteria Calculator Space Conditioning Criteria Annual Heating Demand 5.1 Annual Cooling Demand 6.7 Peak Heating Load 4.0 Peak Cooling Load 3.0 Source Energy Criteria Phius CORE 5500

Petersen Engineering Scope – Leland House

First Cost Information – Leland House

Plumbing		\$160,000
HVAC		\$216,000
Total	\$376,00	D (\$5,529/unit)

Estimated \$100k for gas-fired DHW of same capacity

About 4x higher first cost for all-electric central DHW

Boston, MA					
Temperature		% of Year Weighted		COP	Weighted
Range	Value	% Of Tear	Temperature	COP	COP
70+	70	16.2%	11.34	4.45	0.72
65-70	65	8.7%	5.655	4.42	0.38
60-65	60	10.6%	6.36	4.42	0.47
55-60	55	8.8%	4.84	4.15	0.37
50-55	50	7.1%	3.55	3.76	0.27
45-50	45	8.7%	3.915	3.76	0.33
40-45	40	8.4%	3.36	2.21	0.19
35-40	35	12.1%	4.235	2	0.24
30-35	30	8.1%	2.43	2	0.16
25-30	25	3.7%	0.925	2	0.07
20-25	20	3.2%	0.64	2	0.06
15-20	15	3.0%	0.45	1.87	0.06
10-15	10	0.9%	0.09	1.64	0.01
5-10	5	0.3%	0.015	1.64	0.00
0-5	0	0.1%	0	1.42	0.00
-5-0	-5	0.1%	-0.005	1	0.00
			47.8	Average T	emperature
			Avera	age COP of	3.34

Г	QAHV Heating	g Capacity @47F	Runtime	Heating	Coverage
L	kBtu/hr	kW	hours	kWh	%
Γ	136	39.9			
L	136	39.9			
		79.7 Total	16	1275.6	95.2%
Γ	Swing Tank H	eating Capacity			
L		kW			
Γ		11.6 Total	5.54	64.3	4.8%

Unit Conversions	
kBtu/hr->kW	0.2931
kW->kBtu/hr	3.412

 $300 ft^2$ of mechanical space for Leland QAHV system

Approximately $150 ft^2$ of mechanical space if Leland went with gas-fired DHW

As Designed – WUFI Results with QAHV

Hypothetical – WUFI Results with Electric Resistance

Estimated Annual Energy Use & Cost Assumptions

Estimated Annual Energy Cost – Leland House

QAHV	Gas	
COP of 2.9	COP of 0.7	
~\$9,000/yr	~\$6,000/yr	
QAHV +50%	% more costly	

2010s

ASHP Technology replaces gas space heating with heat pump heating

Phius Certifies Finch Cambridge(100 units, new construction) but still using gas for DHW and ventilation

2018

2010s

2015

Electric ranges and electric laundry (frequently ventless) replace other uses of gas in buildings.

2020

Increased adoption of induction stovetops, condensing and heat pump driers seen as more cost effective than ducted.

2018

2015

2010s

ASHP technology replaces gas for tempering ventilation supply with heat pump heating.

2020

The change requires collaboration between manufacturers of ventilation and ASHP equipment.

2018

2010s

2015

Phius adjusts their Source Energy factor to reflect progress in decarbonization of the electric grid.

2019

2021

2020

Mitsubishi CO₂ air-source heat pump DHW commercial equipment becomes available in North America.

Chronology

Electric Resistance Individual Tank

Instantaneous Electric Resistance

High Operating Cost

Significant Uncontrolled Cold Draft

Hybrid Tanks Using Corridor as Heat Source

Compressors Working in Series Leads to Low COP

The Issue of Compressors in Series

Small Army of Equipment; KISS—Keep It Simple Stupid

High Initial Costs

Lack of Proven Track Record

(1)

2

How to Reduce DHW Use/Cost in Buildings

3

5

Idea	Solution
Down-Size Distribution Piping	Seek Code Relief

6

Idea	Solution
Down-Size DHW Equipment	Size Based on Actual Data

$\overline{7}$

Idea	Solution
Reduced Distribution Losses	Careful Pipe Design

8

Thank You

- james apetersenengineering.com
- <u>dperez@petersenengineering.com</u>