Biomass Design & Potential

Mark Froling President

Office & PDC Production Facility: 590 Hancock Road, Peterborough, NH

Biomass Design & Potential

This course covers: The considerations one should make when designing and planning an automated biomass heating system

A Self-Performing Contractor What We Do:

Biomass Boiler System Installations

with Integration into Existing Boiler Systems

Complete Project Management

Biomass Boiler Servicing & Maintenance

>Manufacture & Delivery of PDCs

Our Experience:

145 Biomass Boilers Installed

Fuel: Mostly wood pellet & dry wood chip

at over 100 Customer Sites

Plus Cleaning, Maintenance & Repairs

PART 1:

Biomass Fuel Choices:

- Wood Pellets
- · PDCs
- Green Wood Chips

3 BIOMASS FUELS TO CONSIDER DEPENDING ON FUEL CONSUMPTION AT YOUR BUILDING!

PELLETS

20,000 to 70,000 gallons of oil

3000 to 30,000 gallons of oil

(Precision Dry Wood Chips)

40,000 gallons of oil to Huge

7% moisture content

Precisely controlled small size Flows like water—easy to store & move Compact BTU storage (by weight & volume)

PDCs "Precision Dry Wood Chips"

FR.LING ENERGY

BIOMASS BOILERS • SERVICE • FUEL

25% moisture content Screened: Nothing bigger than a matchbook Stacks—does not flow. 90% hardwood

PDCs: A Value Added Product

- 25% Moisture Content
- Made from bole wood (the main trunk of a tree)
- Wood quality is similar to wood pellets (Bole wood)
- Screened to eliminate sticks, oversized chunks, rocks and "Tramp metal"
- Able to be blown into a bin through a 5" pipe as long as 150 feet
- Produced with quality control standards
- Does not require a large pit-type bin with roof, garage doors, live floor, etc...

Green Wood Chips

35% to 50% moisture content (varies by season) Many Variables: Size, hard/soft wood, % bark Price is determined by Quality

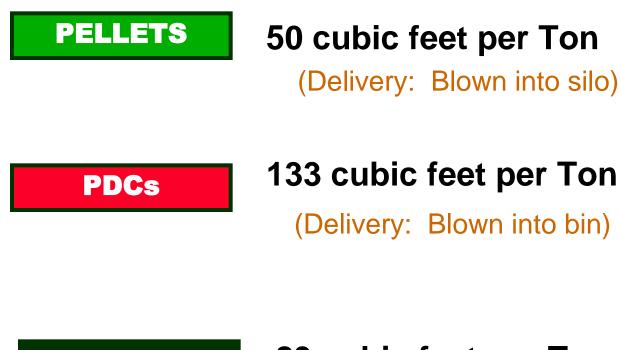
GREEN CHIPS

Wood Chips—In General

The more selectively produced = More expensive

- Whole Tree Chips
- Hardwood / Softwood
- Bole Wood—Main tree trunk with bark

Comparing PDCs and Green Chips


- Green Chips are more readily available
- Green Chips cost less
- Green chips require larger initial investments due to larger infrastructure requirements:
 - Chip delivery & storage systems are bigger and more costly
 - Fuel material handling systems are more robust/costly
 - Green Chip systems usually employ single large boilers
 - The Larger the Load: the more Green Chips make sense!
- Boilers over 2 million BTU/hr output are regulated in NH and must prove compliance with technical standards
 - PDC boilers are usually less than 2 Million BTU/hr
- Green Chips can compost, generating heat or get moldy
 - Must be managed—bins emptied in summer

3 BIOMASS FUELS TO CONSIDER

Volume per Ton

GREEN

CHIPS

83 cubic feet per Ton (Delivery: Dumped into bin)

Calculations use HHV energy content of hardwood burned at 84% Efficiency

3 BIOMASS FUELS TO CONSIDER

Net (burned) Heat Content of Fuel

120.5 Gal Oil per Ton

13.370 Million BTU per Ton

93.5 Gal Oil per Ton

10.392 Million BTU per Ton

66 Gal Oil per Ton 7.335 Million BTU per Ton

Calculations use HHV energy content of hardwood burned at 84% Efficiency

EXAMPLE:

To Offset 30,000 Gallons of Oil ...

PELLETS

Need 249 Tons

Total Biomass Boiler Output: 1.3 Million BTU Storage: 28 ton steel silo 9 fillings

PDCs

Need 321 Tons

Total Biomass Boiler Output: 1.3 Million BTU Storage: 23 ton bin (Min) w/3100 cu ft 14 fillings using 15 ton truck

Need 486 Tons

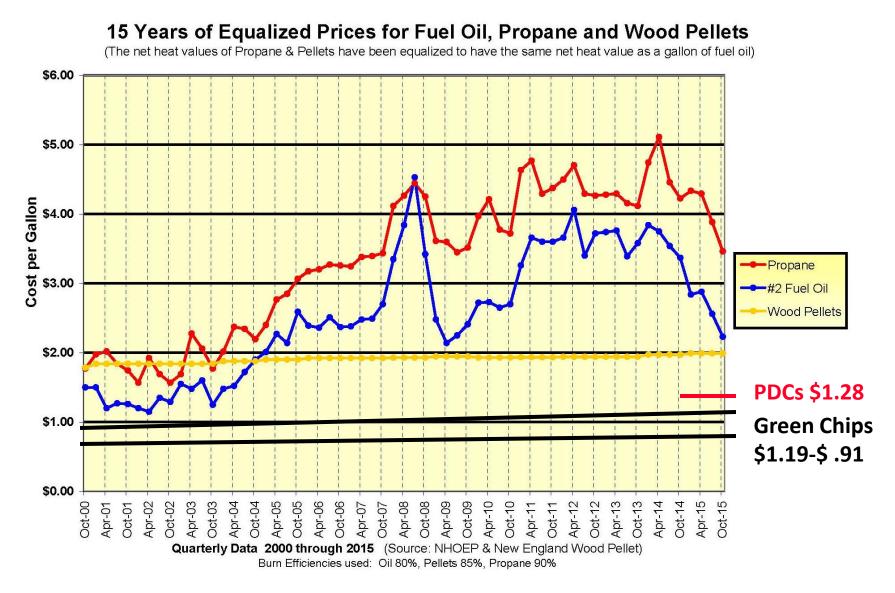
Total Biomass Boiler Output: 1.75 Million BTU Storage: 41 ton bin (Min) w/4000 cu ft 20 fillings using 25 ton truck

Calculations use HHV energy content of hardwood burned at 84% Efficiency

3 BIOMASS FUELS TO CONSIDER

<u>Net Cost</u> of Delivered Fuels.....\$ per Million BTU

	 _		
•			


	_	
• •		

GREEN

CHIPS

Propane at \$2.7	'5/gal = \$35.95
Oil at \$3.00/gal	= \$27.02
Propane at \$2.0	0/gal = 26.14
Oil at \$2.50/gal	= \$22.52
Propane at \$1.5	60/gal = \$19.61
Oil at \$2.00/gal	= \$18.02
at \$240/ton	= \$17.95
Oil at \$1.50/gal	= \$13.59
Propane at \$1.0	0/gal = \$13.07
at \$120/ton	= \$11.55
at \$75/ton	= \$10.22
Oil at \$1.00/gal	= \$9.06
at \$60/ton	= \$8.18

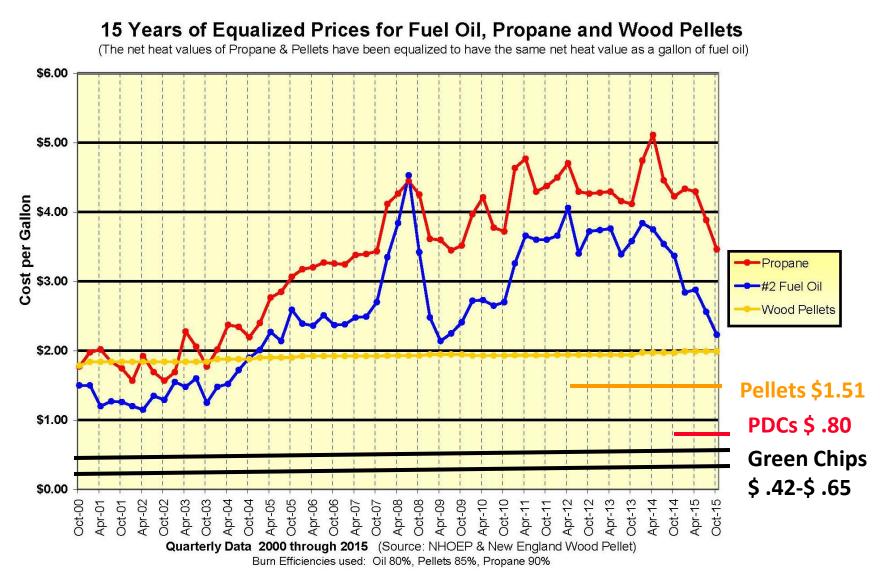
HISTORICAL FUEL PRICES FOR **OIL Propane or BIOMASS**:

All prices noted in Net Oil Price Per Gallon Equivalents

3 BIOMASS FUELS TO CONSIDER

Fuel Cost in Oil Equivalent with THERMAL RECS

Costs the same as \$1.51/Gal Oil



Costs the same as \$.80/Gal Oil

Costs the same as \$.42 to \$.65/Gal

FUEL PRICES: BIOMASS With Thermal RECs!!

All prices noted in Net Oil Price Per Gallon Equivalents

PART 2: Biomass Heating Systems

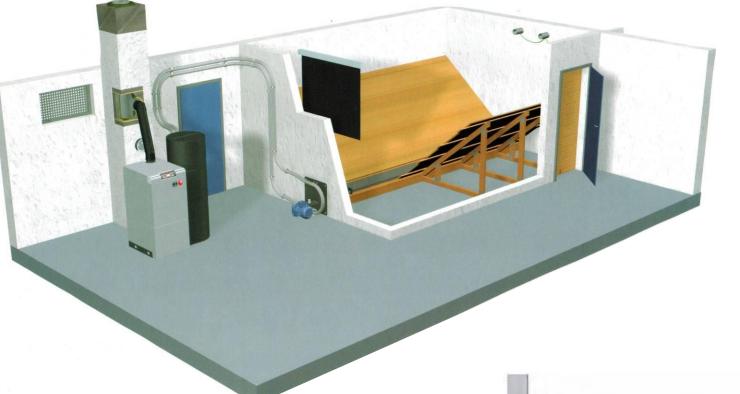
FROLING ENERGY BIOMASS BOILERS · SERVICE · FUEL

A Few Basic Biomass Boiler System Designs

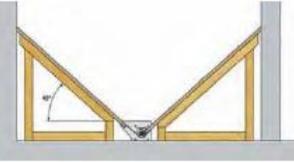
50

Interior Pellet Storage Bag(s) with Pneumatic Feed to Boiler

Pneumatic Pellet delivery trucks—Quick & Easy



15 ton tanker


30 Ton Trailer

Interior Pellet Storage Bin with Augur and Pneumatic Feed to Boiler

Exterior Pellet Storage Silo with Pneumatic Feed to Boiler

Exterior Pellet Storage Silo with Auger Feed to Boiler

PDCs

Horizontal Auger Extraction System

Interior Pellet Storage Bin with Auger Feed to Boiler

© Filling

Our New Biomass Fuel:

PDCs

Made at our facility in Peterborough

Delivered in our Box Truck and BLOWN into customer storage bins

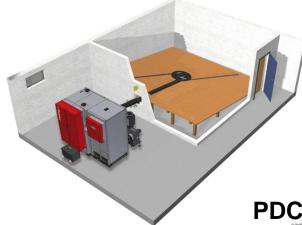
DESIGN PARAMETERS for PDCs

For 20,000 to 70,000 Gallons per year Consumption

Storage Bin: Interior Sweeper Arm Type: 15, 23 or 34 tons each (Min/Max)

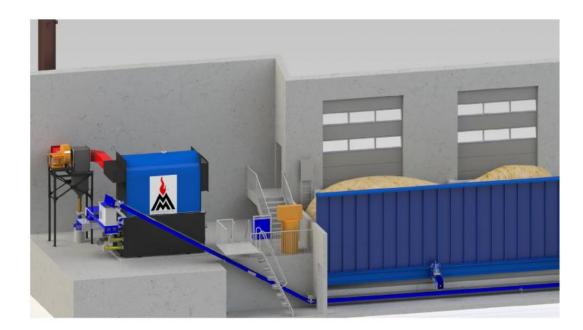

144/225/324 sq ft

- Each Bin supplies one or two Boilers
- Boilers are direct fed with rigid auger from Bin
- Bin must be close to Boiler (back to back)
- Boiler and Bin also able to handle pellets (Dual Fuel)
- New building often needed due to larger footprint

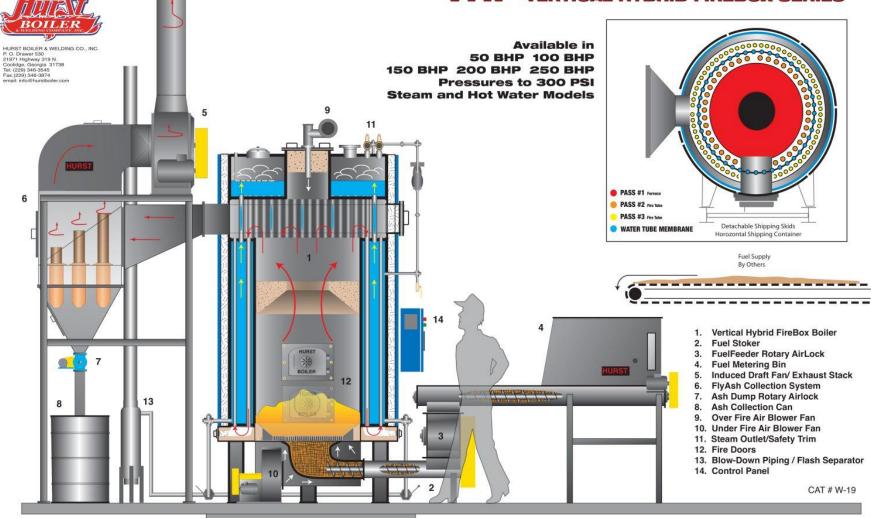

HIGH MOWING SCHOOL Wilton, NH

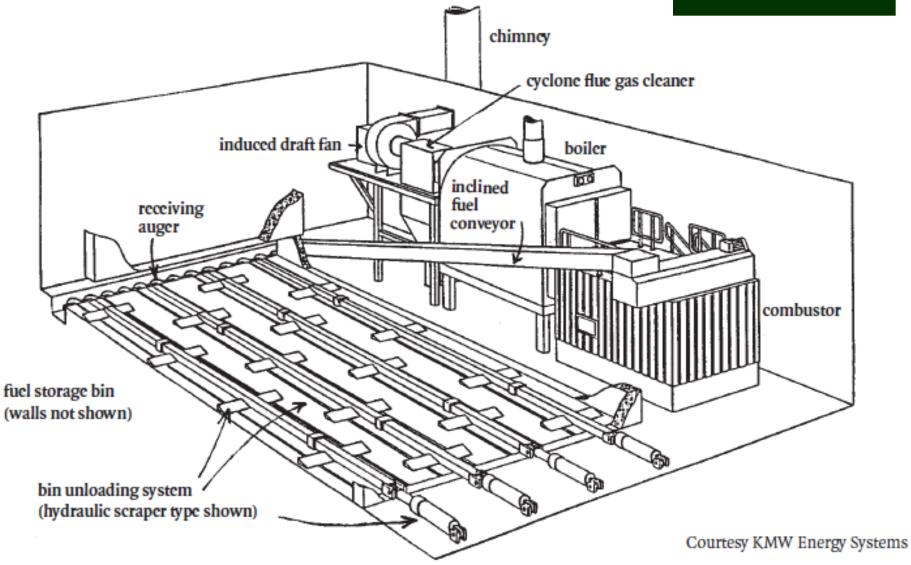
PDCs are blown into the silos from our blower truck

HIGH MOWING SCHOOL Wilton, NH


2 Froling TX-150 Boilers = 1 Million BTU/hr Propane Back up = 1.5 million BTU/hr

9 Building District Heating Systemwith Central Biomass Boiler BuildingPrior fuel use: 30,000 Gal Oil


Shown: A Typical Messersmith System


GREEN CHIPS

VHF VERTICAL HYBRID FIREBOX SERIES

Figure 3.1 A Typical Biomass System

GREEN CHIPS

Photo of Green Chip Delivery Truck (Live

Example: Hanover High School Green Wood Chip Boiler System

5 Million BTU Max Output

A Cyclone is often required to remove particulates from the exhaust.

Example: Hanover High School Green Wood Chip Boiler System

GREEN CHIPS

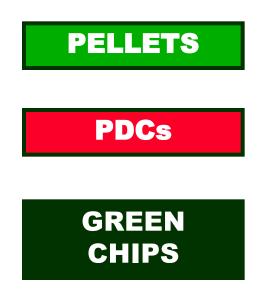
SCHEUCH ESP

In some cases an ESP is required in the exhaust stream (Electrostatic Precipitator)

DESIGN PARAMETERS for Green Chips

For over 40,000 Gallons per year Consumption

Interior Bin: 37 tons minimum (400 sq ft)

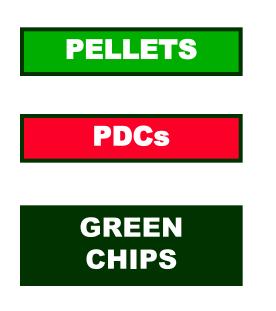

Design: Live Floor or Rake / Auger & conveyors

- Bin must be fairly close Boiler so conveyor system can get the chips up to the boiler
- Typically installed in new boiler room/house due to large footprint
- Usually employs one large boiler (100% Design Load)
- Boilers are fed by conveyors, pushers & augers

PART 3:

Sizing for Financial Viability

When to switch to Biomass?



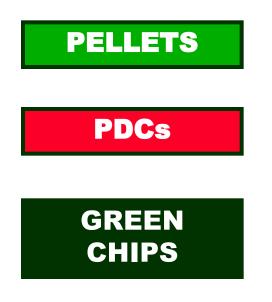
- ☑ Oil Boilers need to be replaced
- Oil Tank Inspection Results need repairs or replacement
- Green Initiative (Sets Green Example for Students and the Community)

☑ New Addition / New Building

Performance Contract

Design Criteria

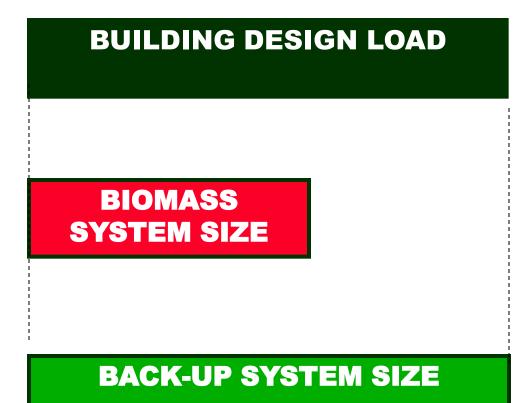
How much fuel is consumed each year? (3-5 yr avg)


What conservation steps reduce the heat load?

Are other buildings close that could be in a District system?

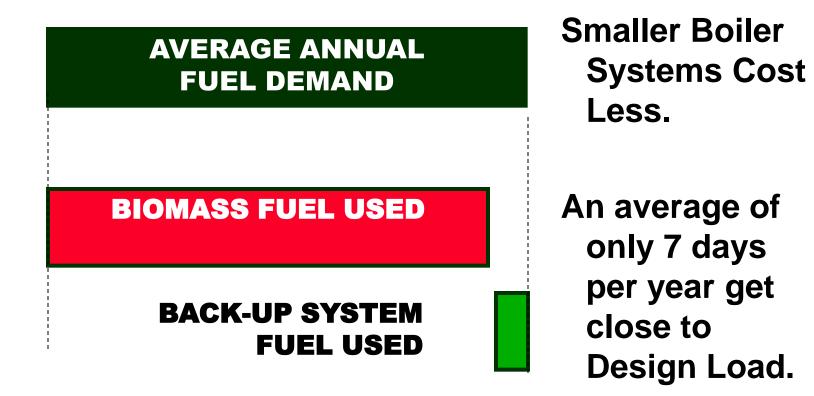
What physical constraints do the property present?

Are other issues forcing a need to replace current equipment?


Issues & Challenges of Conversion

- Boiler room too small
- New Boiler House is necessary
- Difficulty locating fuel storage silo/bin near boiler
- Difficult access to silo/bin for Fuel Delivery Truck
- ☑ Steam Heat (Convert to FHW?)
- ☑ Availability of Natural Gas!

Don't Oversize the System


Size the Biomass System to be 65% to 75% of Design Load...

And cover 90% to 95% of annual heat needs.

Don't Oversize the System!

For BIG Fuel Users

BUILDING DESIGN LOAD BIOMASS SYSTEM SIZE BACK-UP SYSTEM SIZE

Size the Biomass System to be 100% of Design Load...

GREEN CHIPS

For BIG Fuel Users

AVERAGE ANNUAL FUEL DEMAND

BIOMASS FUEL USED

BACK-UP SYSTEM FUEL USED

And cover 80% of annual heating needs.

WHY?

When loads are too small these systems are turned off: Start Up in October

& Turn Off in March

The 95% vs 80% Coverage Dilemna

If you are burning 50,000 gallons of oil per year...

System Cost Estimate: Net Average Oil offset: **\$350,000** 95% or 47,500 Gal GREEN CHIPS

\$500,000 80% or 40,000 Gal

Average Biomass use: Biomass Cost: Average Thermal RECs: 507 tons per year at \$120/Ton = \$60,840 1542 @ \$15 = \$23,130

605 tons per year at \$60/Ton = \$36,300 1542 @ \$15 = \$23,130

Net Average Oil Use:

Net Average Oil Cost:

TOTAL Average Annual Fuel Cost: 2,500 gallons @ \$3.00 = \$7,500

\$45,210

10,000 gallons @ \$3.00 = \$30,000

\$43,170

At \$40 a ton for Green Chips... Fuel costs cut by \$12,100

Economics of a Biomass Conversion

Total System Cost

Divided by

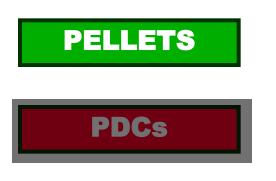
Projected Average Annual Savings

PELLETS

PDCs

HOWEVER: Other important factors may be pivotal.

- Buried Oil Tank is failing
- Existing Oil Boilers need replacement
- Energy Conservation Measures planned
- New Addition is being planned
- Switching from Steam to FHW

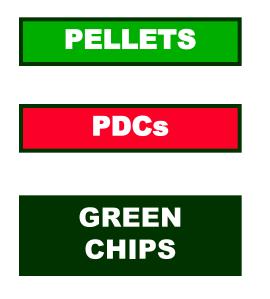

Making the Case for a Biomass System

ROI and "Payback" models don't tell the Whole Story!

A more realistic method is costing out "Alternate Futures"

- PLAN A: Stick with Oil—Replace oil boiler in year X. Replace buried oil tank. Upgrade other components. + 10 Yrs Fuel Costs
- PLAN B: Convert to wood pellet boiler system. Remove buried oil tank. Back up with Propane boilers. + 10 Yrs Fuel Costs
- PLAN C: Convert to PDC boiler system + 10 Yrs Fuel Costs
- PLAN D: Convert to Green Chip boiler system + 10 Yrs Fuel Costs
- Include Rebates, RECs, Grants, etc... in Each PLAN
- Include 10 to 20 years of projected future fuel costs in each PLAN
 - Agree upon reasonable future fuel prices in projections (\$3 Oil?)
 - Keep fuel costs flat over the 10 to 20 year period

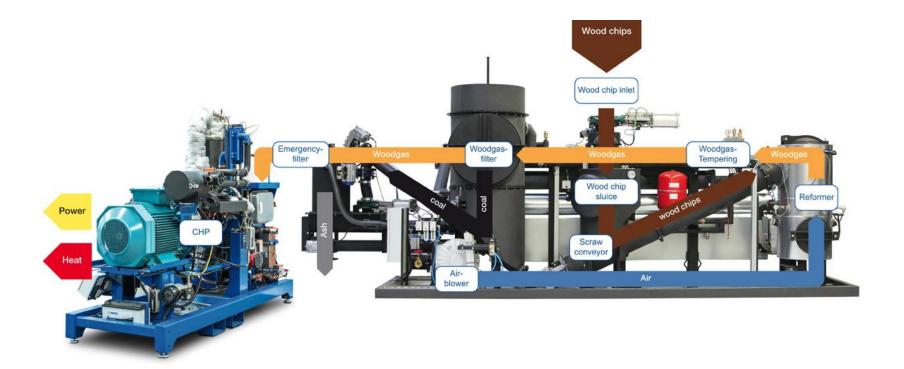
NH Pellet Boiler 30% Rebate



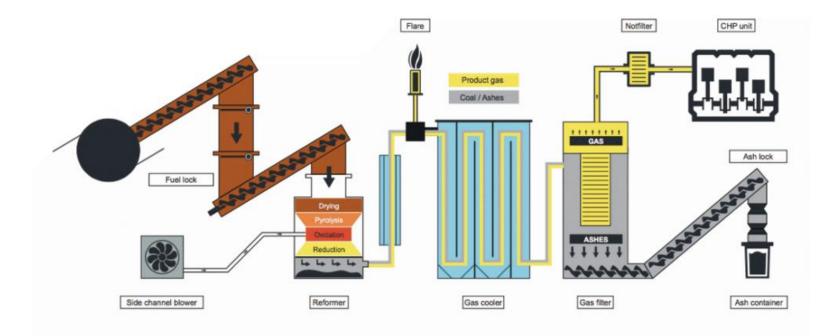
Rebate comes from NHPUC

- Wood Pellet systems ONLY
- Cap of \$50,000 (+ \$5,000 max for Buffer Tank)
- Apply in advance > Funds earmarked for you.
 - Funds paid out when project is complete
 - Best to apply before a public vote
- Must use recognized equipment and trained installers

NH Thermal RECs


(Renewable Energy Credits)

- T-RECs available for any Biomass boiler system installed after January 1, 2013
- Must have site approved by NHPUC
- Pellets get approximately 4 T-RECs per ton
 PDCs: 3/ton Green Chips 2/ton
 - · Generally: .0325 RECs per Offset gallon of Oil
- Requires Monitoring Equipment
 - BTU Meter & Data Accumulator
- Requires Qualified Verification
- Sell T-RECs in NEPOOL System Directly or by Agent.
 - Value varies approx \$10-\$25 each


PART 5: The Near Future and Cogeneration Options

Spanner CHP 45KW Electrical Power 108KW Thermal Power 81% overall efficiency Cost installed app. \$300K

Froeling CHP 50

50KW Electrical Power 107KW Thermal Power 83% Overall Efficiency Installed Cost \$350K

PART 6:

Three Biomass Heating Projects

LYME ELEMENTARY SCHOOL Lyme, NH

LYME ELEMENTARY SCHOOL Lyme, NH

PELLETS

Prior Oil Use: 10,000 Gallons/yr
2 - 340,000 BTU boilers do 95% coverage
28 ton Silo
Propane back up can cover 100%

CORNISH ELEMENTARY SCHOOL Cornish, NH

PELLETS

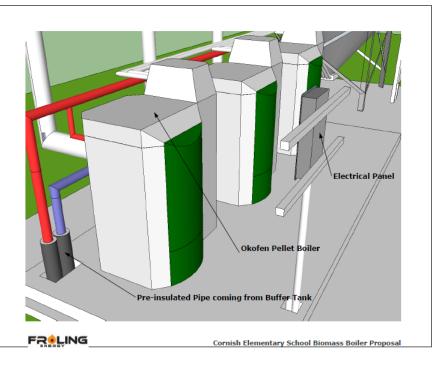
CORNISH ELEMENTARY SCHOOL Cornish, NH

PELLETS

Containerized Boiler Rooms

Built at our shop—dropped into place by crane

CORNISH ELEMENTARY SCHOOL Cornish, NH



CORNISH ELEMENTARY SCHOOL Cornish, NH

STEVENS HIGH SCHOOL Claremont, NH

STEVENS HIGH SCHOOL Claremont, NH

Before

A large scale renovation was done in 2014

After

STEVENS HIGH SCHOOL Claremont, NH

PELLETS

PDCs

STEVENS HIGH SCHOOL Claremont, NH

2 Froling TX-150 Pellet/PDC Boilers 500,000 BTU/Hr Each

Steel Interior Silo can hold 70 tons of Pellets Or 35 tons of PDCs

STEVENS HIGH SCHOOL Claremont, NH Constant

Monitoring" C 🏦 🗋 www.dcmlogic.com/boilerbrowser/SiteChoice.php Ξ • -> Apps 💧 Froling Energy - Ne... 🗋 Boiler Plant 💧 TARM Fuel Cost Cal... 🚺 Insightly - Login 🤍 MESYS OkoFEN 🗋 Kedel Pellet Boilers 🐹 Google Maps 🦹 Advertise M Inbox (501) - jim@fr... » C Other bookmarks Summary Site: Claremont Stevens HS + Plant + Graphing + Performance Data Tables + Logs + BoilerMaestro + 158.9°F 151.7% 151.7 161.6°F Heating Boiler off Boiler Control 74% Boiler Control 100% Fan Control 0% 75% Fan Control Feed Rate 0% Feed Rate 85% **Residual O2** 0.0% **Residual O2** 11.4% Circulator OFF Circulator ON Plant - Graphing - Performance Data Tables - Logs - BoilerMaestro -Fixed OBoller Cycles | Number of Hours Visible: 24 a In These Graphs Email these graphs: 🌖 Yes 💿 No

FROLING ENERGY BIOMASS BOILERS SERVICE FUEL

Questions?

Jim@FrolingEnergy.com

603-924-1001 www.FrolingEnergy.com

FROLING ENERGY BIOMASS BOILERS SERVICE FUEL

Thank You!

Jim@FrolingEnergy.com

603-924-1001 www.FrolingEnergy.com

A 30% Rebate is available now from the NHPUC for Commercial Bulk-Fed Wood Pellet Central Heating Systems

(Schools & Municipal Buildings Included)

For installation of bulk-fuel fed wood pellet boilers and furnaces of 2.5 million BTU Output or less

Provides 30% of the cost of the boilers with installation, up to a maximum of \$50,000.

Must be operational before December 18, 2013.

RENEWABLE ENERGY CREDITS FROM THE NHPUC

FOR CLASS I THERMAL SOURCES WITH RENEWABLE THERMAL ENERGY CAPACITY GREATER THAN 150,000 BTU/HR

- The Biomass boiler system installation must be completed with an approved energy production metering system in place
- A Registered Engineer must affirm that the installation meets the standards
- The official Application is completed, submitted and accepted by the NHPUC

RENEWABLE ENERGY CREDITS FROM THE NHPUC

Current Values

- For each ton of biomass (wood pellets) burned you get about 4 Thermal RECs
- Thermal RECs can be sold each year at a set rate
- We expect them to trade for between \$12 and \$25 each year
- RECS were sold for \$22 in the most recent sale

PART 7:

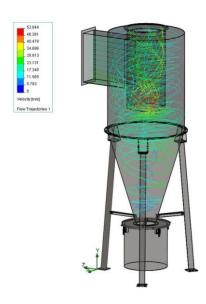
More Biomass Heating Projects

NORTHWEST ELEMENTARY SCHOOL Rutland, VT

PUTNEY SCHOOL Putney, VT

CANAAN ELEMENTARY Canaan, NH

RUTLAND HIGH SCHOOL & STAFFORD TECHNICAL CENTER Rutland, VT



PART 4:

Emissions Implications of Biomass Fuels

Proven Emissions Control Equipment

- Electro Static Precipitator (ESP)
- Metal Mesh Filter
- Bag House
- Ceramic filter Baghouse
- Cyclone

Massachusetts Emissions Limits so you can get Grants (200,000-3,000,000BTU)

- Sensitive Receptor Sites (Hospitals, Schools, Nursing Homes, Daycare Centers)
- PM 2.5 < .03 lbs/MMBTU/hr
- Nox < .22 lbs/MMBTU/hr</p>
- CO < .18 lbs/MMBTU/hr
- General Sites
- PM 2.5 < .08 lbs/MMBTU/hr
- Nox < .22 lbs/MMBTU/hr
- CO < .18 lbs/MMBTU/hr

Equipment that will comply with regulations Complies in MA and NH with Pellets

Fröling P4 Fröling T4 Fröling TX Fröling TM

Needs ESP with Chips

Viessmann KRT and KPT Boilers Complies in MA and NH with Pellets

Needs ESP with Chips