BUILDINGENERGY BOSTON

A Revolution in Embodied Carbon: Four Pivotal Materials

Jim D'Aloisio (Klepper, Hahn and Hyatt)
Jodi Smits Anderson (New Buildings Institute)

Curated by Aidan Mayer (Northeastern University)

Northeast Sustainable Energy Association (NESEA) | March 19, 2024

A Revolution in Embodied Carbon: Four Materials

Jodi Smits Anderson, New Buildings Institute Jim D'Aloisio, Klepper, Hahn & Hyatt

Why Concrete, Glass, Steel, and Asphalt?

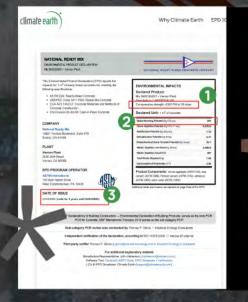
These are the most carbon-intensive building materials, and used in significant amounts.

iteel -

The steel industry produces about 3 billion metric tons of CO2e per year. Arc furnaces in China averaged 3 tons of CO2e per ton of new steel. Globally 7.2 - 11% of emissions.

Concrete

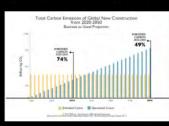
In 2022, cement emitted 1.6 billion metric tons of CO2e, and the industry's impacts doubled from 2002-2021. Globally, 8% of emissions.


Glass -

In 2022 flat glass clocked in at over **95 million metric** tons of emissions for \$100 billion of demand.

sphalt -

~20 million metric tons in USA in 2019. 94% of roadways in USA are asphalt. Increasing RAP (reclaimed asphalt pavement) by 1% would reduce by .14 mmt)


Simple shifts, NOW

- 1) Compare Performance (should match)
- 2) Compare GWP
- 3) Check expiration date!
- Confirm uncertainty of methodology (industry average or manufacturer, fuel sources, location?)
- 5) Compare Primary Sources (should match)

from climate earth

Also, EPDs are about MORE than GWP. Never stop learning!

Embodied Energy is AS IMPORTANT as Operational Energy regarding emissions.

Why Concrete, Glass, Steel, and Asphalt?

These are the most carbon-intensive building materials, and used in significant amounts.

Steel -

The steel industry produces about **3 billion metric tons** of CO2e per year. Arc furnaces in China averaged 3 tons of CO2e per ton of new steel. Globally 7.2 - 11% of emissions.

Concrete -

In 2022, cement emitted **1.6 billion metric tons** of CO2e, and the industry's impacts doubled from 2002-2021. Globally, 8% of emissions.

Glass -

In 2022 flat glass clocked in at over **95 million metric tons** of emissions for \$100 billion of demand.

Asphalt -

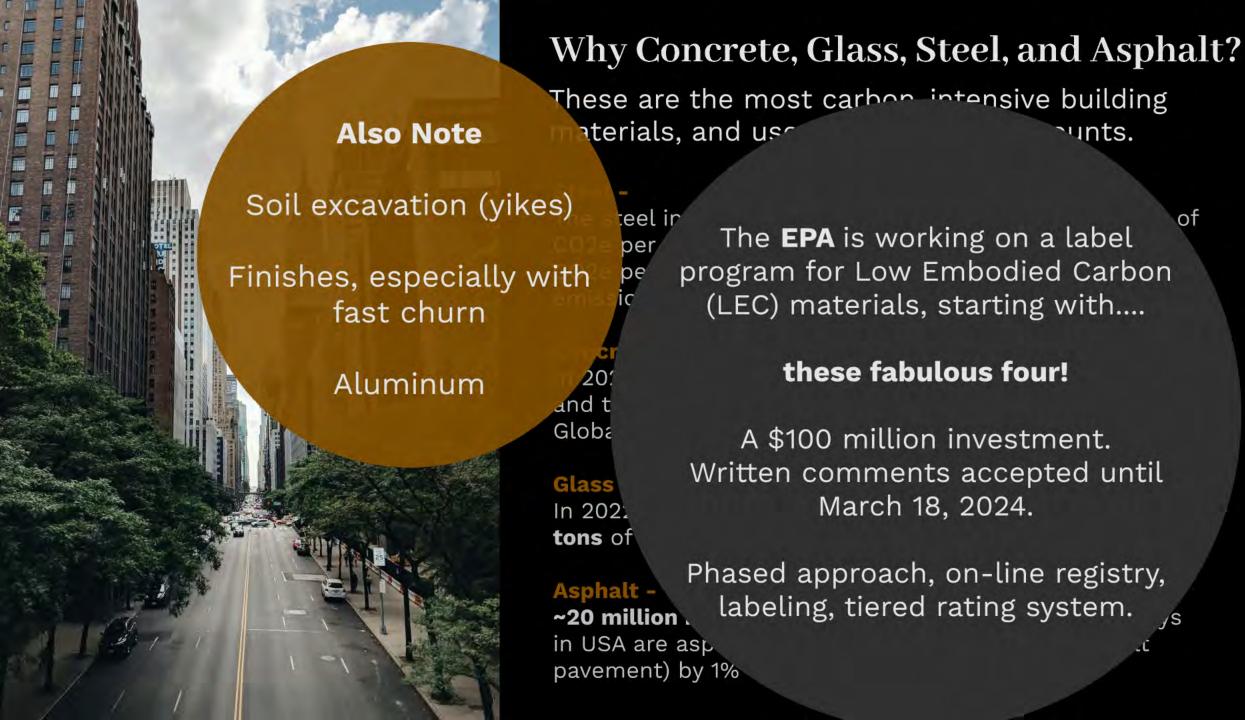
~20 million metric tons in USA in 2019. 94% of roadways in USA are asphalt. Increasing RAP (reclaimed asphalt pavement) by 1% would reduce by .14 mmt)

Why Concrete, Glass, Steel, and Asphalt?

These are the most carbon-intensive building terials, and used in significant amounts.

eel industry produces about 3 billion metric tons of per year. Arc furnaces in China averaged 3 tons of per ton of new steel. Globally 7.2 - 11% of ions.

crete -


2022, cement emitted **1.6 billion metric tons** of CO2e, and the industry's impacts doubled from 2002-2021. Globally, 8% of emissions.

Glass -

In 2022 flat glass clocked in at over **95 million metric** tons of emissions for \$100 billion of demand.

Asphalt -

~20 million metric tons in USA in 2019. 94% of roadways in USA are asphalt. Increasing RAP (reclaimed asphalt pavement) by 1% would reduce by .14 mmt)

Example Building CO₂e from Structure

(-10) psf Incl. biogenic C

20 psf w/o biogenic C

Conventional Construction

Incremental Changes

Transformative Changes

100,000 sf, 10-Story Mixed-Use Building Conventional Construction – structure only

								The second second
MATERIAL							lbs. CO2e/lb.	lbs. CO2e
20 ga. steel roof decking	10,000	sf.	2.2	psf	22,000	lbs.	2.61	57,420
Open-web steel roof joists	10,000	sf	2.7	psf	27,000	lbs.	1.52	41,040
Structural steel framing (incl. shear conn's)	100,000	sf	8.7	psf	870,000	lbs.	1.38	1,200,600
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270
Cold-formed steel wall studs	150,000	sf	0.4	psf	60,000	lbs.	2.53	151,800
Shear walls, 80 lf, 12"t, 4000 psi	9,600	sf	356	су	1,386,667	lbs.	0.23	318,933
2-10th fl. conc - 3.5" eff. t, 4000 psi	90,000	sf	972	су	3,791,667	lbs.	0.23	872,083
1st floor conc slab - 5" 4000 psi	10,000	sf	154	су	601,852	lbs.	0.23	138,426
Strip ftgs, fd'n walls, 4000 psi	2,704	sf	160	cy	623,362	lbs.	0.23	143,373
Int. ft'gs, piers 12 x 8'x8'x18", 4000 psi	768		51	су	199,680	lbs.	0.23	45,926
Steel rebar, assume 0.7% conc vol.	2,6	су	69	cf	34,733	lbs.	0.94	32,649
								3,542,522 lbs. CO ₂ 6
								35.43 psf

An Example - 100,000 sf "typical" mixed use building.

First, the conventional material approach.

Then an incremental set of changes.

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
22 ga. steel roof decking	10,000	sf	1.8	psf	18,000	lbs.	2.61	46,980	
Open-web steel roof joists	10,000	sf	2.6	psf	26,000	lbs.	1.52	39,520	
Structural steel framing (19% optimized)	100,000	sf	7.9	psf	790,000	lbs.	1.38	1,090,200	
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270	
2x4 / 2x6 wall studs - 22% framing factor	150,000	sf	3.2	psf	484,000	lbs.	0.17	82,280	
Shear walls, 80 lf, 12"t, 4000 psi, 20% fly ash	9,600	sf	356	су	1,386,667	lbs.	0.19	263,467	
2-10th fl. conc - 3.5" eff. t, 3000 psi, 20% fly ash	90,000	sf	972	су	3,791,667	lbs.	0.16	606,667	
1st floor conc slab - 4" 3000 psi, 20% fly ash	10,000	sf	123	су	481,481	lbs.	0.16	77,037	
Strip ftgs, FPSF fd'n walls, 3500 psi, 20% fly ash	1,664	sf	82	су	319,673	lbs.	0.17	54,344	
Int. ft'gs, 12 x 8'x8'x18", 3500 psi, 20% fly ash	768	sf	43	су	166,400	lbs.	0.17	28,288	
Steel rebar, assume 0.7% conc vol.	8.5	су	231	cf	116,012	lbs.	0.94	109,051	
								2,938,104	lbs. CO ₂ e
								29.38	psf

100,000 sf, 10-Story Mixed-Use Building Conventional Construction – structure only

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
20 ga. steel roof decking	10,000	sf	2.2	psf	22,000	lbs.	2.61	57,420	
Open-web steel roof joists	10,000	sf	2.7	psf	27,000	lbs.	1.52	41,040	
Structural steel framing (incl. shear conn's)	100,000	sf	8.7	psf	870,000	lbs.	1.38	1,200,600	
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270	
Cold-formed steel wall studs	150,000	sf	0.4	psf	60,000	lbs.	2.53	151,800	
Shear walls, 80 lf, 12"t, 4000 psi	9,600	sf	356	су	1,386,667	lbs.	0.23	318,933	
2-10th fl. conc - 3.5" eff. t, 4000 psi	90,000	sf	972	су	3,791,667	lbs.	0.23	872,083	
1st floor conc slab - 5" 4000 psi	10,000	sf	154	су	601,852	lbs.	0.23	138,426	
Strip ftgs, fd'n walls, 4000 psi	2,704	sf	160	су	623,362	lbs.	0.23	143,373	
Int. ft'gs, piers 12 x 8'x8'x18", 4000 psi	768		51	су	199,680	lbs.	0.23	45,926	
Steel rebar, assume 0.7% conc vol.	2.6	су	69	cf	34,733	lbs.	0.94	32,649	
								3,542,522	lbs. CO ₂ e
								35.43	psf

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
22 ga. steel roof decking	10,000	sf	1.8	psf	18,000	lbs.	2.61	46,980	
Open-web steel roof joists	10,000	sf	2.6	psf	26,000	lbs.	1.52	39,520	
Structural steel framing (19% optimized)	100,000	sf	7.9	psf	790,000	lbs.	1.38	1,090,200	
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270	
2x4 / 2x6 wall studs - 22% framing factor	150,000	sf	3.2	psf	484,000	lbs.	0.17	82,280	
Shear walls, 80 lf, 12"t, 4000 psi, 20% fly ash	9,600	sf	356	су	1,386,667	lbs.	0.19	263,467	
2-10th fl. conc - 3.5" eff. t, 3000 psi, 20% fly ash	90,000	sf	972	су	3,791,667	lbs.	0.16	606,667	
1st floor conc slab - 4" 3000 psi, 20% fly ash	10,000	sf	123	су	481,481	lbs.	0.16	77,037	
Strip ftgs, FPSF fd'n walls, 3500 psi, 20% fly ash	1,664	sf	82	су	319,673	lbs.	0.17	54,344	
Int. ft'gs, 12 x 8'x8'x18", 3500 psi, 20% fly ash	768	sf	43	су	166,400	lbs.	0.17	28,288	
Steel rebar, assume 0.7% conc vol.	8.5	су	231	cf	116,012	lbs.	0.94	109,051	
								2,938,104	lbs. CO₂e
							[29.38	psf

100,000 sf, 10-Story Mixed-Use Building Conventional Construction – structure only

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
20 ga. steel roof decking	10,000	sf	2.2	psf	22,000	lbs.	2,51	57,420	
Open-web steel roof joists	10,000	sf	2.7	psf	27,000	lbs.	1.52	41,040	
Structural steel framing (incl. shear conn's)	100,000	sf	8.7	psf	870,000	lbs.	1.38	1,200,600	
Composite steel floor decking	90,000	sf	2,3	psf	207,000	lbs.	2.61	540,270	
Cold-formed steel wall studs	150,000	sf	0.4	psf	60,000	lbs.	2.53	151,800	
Shear walls, 80 lf, 12"t, 4000 psi	9,600	sf	356	cy	1,386,667	lbs.	0.23	318,933	
2-10th fl. conc - 3.5" eff. t, 4000 psi	90,000	sf	972	cy	3,791,667	lbs.	0.23	872,083	
1st floor conc slab - 5" 4000 psi	10,000	sf	154	cy	601,852	lbs.	0.23	138,426	
Strip ftgs, fd'n walls, 4000 psi	2,704	sf	160	су	623,362	lbs.	0.23	143,373	
Int. ft'gs, piers 12 x 8'x8'x 18", 4000 psi	768		51	cy	199,680	lbs.	0.23	45,926	
Steel rebar, assume 0.7% conc vol.	2.6	cy	69	cf	34,733	lbs.	0.94	32,649	
								3,542,522	lbs. CO2e
								35.43	psf

An Example - 100,000 sf "typical" mixed use building.

First, the conventional material approach.

Then an incremental set of changes.

								100	
MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
22 ga. steel roof decking	10,000	sf	1.8	psf	18,000	lbs.	2.61	46,980	
Open-web steel roof joists	10,000	sf	2.6	psf	26,000	lbs.	1.52	39,520	
Structural steel framing (19% optimized)	100,000	sf	7.9	psf	790,000	lbs.	1,38	1,090,200	
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270	
2x4 / 2x6 wall studs - 22% framing factor	150,000	sf	3.2	psf	484,000	lbs.	0.17	82,280	
Shear walls, 80 lf, 12"t, 4000 psi, 20% fly ash	9,600	sf	356	су	1,386,667	lbs.	0.19	263,467	
2-10th fl. conc - 3.5" eff. t, 3000 psi, 20% fly ash	90,000	sf	972	су	3,791,667	lbs.	0.16	606,667	
1st floor conc slab - 4" 3000 psi, 20% fly ash	10,000	sf	123	су	481,481	lbs.	0.16	77,037	
Strip ftgs, FPSF fd'n walls, 3500 psi, 20% fly ash	1,664	sf	82	су	319,673	lbs.	0.17	54,344	
Int. ft'gs, 12 x 8'x8'x18", 3500 psi, 20% fly ash	768	sf	43	су	166,400	lbs.	0.17	28,288	
Steel rebar, assume 0.7% conc vol.	8.5	су	231	cf	116,012	lbs.	0.94	109,051	
								2,938,104	Ibs. COze
								29.38	psf

100,000 sf, 10-Story Mixed-Use Building Conventional Construction – structure only

MATERIAL 20 ga. steel roof decking 10,000 sf 2.2 psf 22,000 lbs. 2.61 57,420 Open-web steel roof joists 41,040 1,200,600 540,270 Cold-formed steel wall studs 151,800 Shear walls, 80 lf, 12"t, 4000 psi 318,933 2-10th fl. conc - 3.5" eff. t. 4000 psi 872,083 1st floor conc slab - 5" 4000 psi 138,426 143,373 Int. ft'gs, piers 12 x 8'x8'x18", 4000 psi 45,926 Steel rebar, assume 0.7% conc vol. 32,649 3,542,522 lbs. CO2e

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
22 ga. steel roof decking	10,000	sf	1.8	psf	18,000	lbs.	2.61	46,980	
Open-web steel roof joists	10,000	sf	2.6	psf	26,000	lbs.	1.52	39,520	
Structural steel framing (19% optimized)	100,000	sf	7.9	psf	790,000	lbs.	1.38	1,090,200	
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270	
2x4 / 2x6 wall studs - 22% framing factor	150,000	sf	3.2	psf	484,000	lbs.	0.17	82,280	
Shear walls, 80 lf, 12"t, 4000 psi, 20% fly ash	9,600	sf	356	су	1,386,667	lbs.	0.19	263,467	
2-10th fl. conc - 3.5" eff. t, 3000 psi, 20% fly ash	90,000	sf	972	су	3,791,667	lbs.	0.16	606,667	
1st floor conc slab - 4" 3000 psi, 20% fly ash	10,000	sf	123	су	481,481	lbs.	0.16	77,037	
Strip ftgs, FPSF fd'n walls, 3500 psi, 20% fly ash	1,664	sf	82	су	319,673	lbs.	0.17	54,344	
Int. ft'gs, 12 x 8'x8'x18", 3500 psi, 20% fly ash	768	sf	43	су	166,400	lbs.	0.17	28,288	
Steel rebar, assume 0.7% conc vol.	8.5	су	231	cf	116,012	lbs.	0.94	109,051	
								2,938,104	Ibs. CO ₂ e
								29.38	psf

100,000 sf, 10-Story Mixed-Use Building

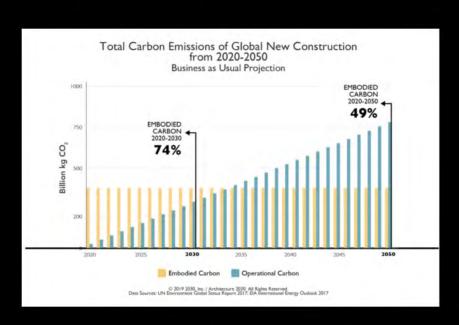
Transformative – structure only

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
5-ply CLT (6 7/8") roof and floor decking	100,000	sf	17.8	psf	1,776,042	lbs.	0.28	497,292	
7-ply CLT (9 5/8) wall panels 20% WWR	39,936	sf	24.9	psf	992,992	lbs.	0.28	278,038	
Glulam roof and floor beams - 5 1/2" x 14"	12,000	lf	20.9	plf	250,250	lbs.	0.37	92,593	
Glulam columns - est. 12 int, avg. 5 1/2" X 16"	1,440	lf	22.2	plf	31,964		0.37	11,827	
Steel composite floor ties	90,000	sf	1.2	psf	108,000		2.53	273,240	
Steel conn hardware for glulam, 10 lbs. ea.	1,680	pcs	10	lbs.	16,800		1.62	27,216	
2-10th fl. conc - 2" t, 3000 psi, 30% slag	90,000	sf	556	су	2,166,667	lbs.	0.12	260,000	
Shear walls, 80 lf, 12"t, 4000 psi, 30% slag	9,600	sf	356	су	1,386,667	lbs.	0.19	263,467	
1st floor conc slab - 4" 2500 psi, 30% slag	10,000	sf	123	су	481,481	lbs.	0.11	52,963	
Strip ftgs, FPSF fd'n walls, 3500 psi, 30% slag	2,704	sf	133	су	519,468	lbs.	0.13	67,531	
Int. ft'gs, optimized 3500 psi, 30% slag	768	sf	34	су	133,120	lbs.	0.13	17,306	
Steel rebar, assume 0.7% conc vol.	8.4	су	227	cf	114,261	lbs.	0.94	107,405	
								1,948,876	lbs. CO ₂ e
								19.49	psf

100,000 sf, 10-Story Mixed-Use Building Transformative – structure only

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
5-ply CLT (67/8") roof and floor decking	100,000	sf	17.8	psf	1,776,042	lbs.	0.28	497,292	
7-ply CLT (9 5/8) wall panels 20% WWR	39,936	sf	24.9	psf	992,992	lbs.	0.28	278,038	
Glulam roof and floor beams - 5 1/2" x 14"	12,000	lf	20.9	plf	250,250	lbs.	0.37	92,593	
Glulam columns - est. 12 int, avg. 5 1/2" X 16"	1,440	lf	22.2	plf	31,964		0.37	11,827	
Steel composite floor ties	90,000	sf	1.2	psf	108,000		2.53	273,240	
Steel conn hardware for glulam, 10 lbs. ea.	1,680	pcs	10	lbs.	16,800		1.62	27,216	
2-10th fl. conc - 2" t, 3000 psi, 30% slag	90,000	sf	556	су	2,166,667	lbs.	0.12	260,000	
Shear walls, 80 lf, 12"t, 4000 psi, 30% slag	9,600	sf	356	су	1,386,667	lbs.	0.19	263,467	
1st floor conc slab - 4" 2500 psi, 30% slag	10,000	sf	123	су	481,481	lbs.	0.11	52,963	
Strip ftgs, FPSF fd'n walls, 3500 psi, 30% slag	2,704	sf	133	су	519,468	lbs.	0.13	67,531	
Int. ft'gs, optimized 3500 psi, 30% slag	768	sf	34	су	133,120	lbs.	0.13	17,306	
Steel rebar, assume 0.7% conc vol.	8.4	су	227	cf	114,261	lbs.	0.94	107,405	
								1,948,876	lbs. CO ₂ e
								19.49	psf

Transformational!!


Still using steel and concrete, but in more deliberate and essentialized approaches.

Grown materials are gaining prominence.

Down to under 20 pounds CO2e psf even without calculating the biogenic storage.

We have the power!

Embodied Energy is AS IMPORTANT as Operational Energy regarding emissions.

Policies at Federal and State

Federal, State, and Municipal-level policies are in place - all over the place!

- USA Federal Government has purchasing power of over \$630 Billion a year.

 Focused on EPDs and reduced limits for preferential purchasing.

 Affecting 150 IRA projects (announced Docember 2023)

 Building on lessons from 11-project pilot phase during which over 5,000 new EPDs were created.

 Goals include a net-zero emission Federal Building Portfolio by 2045, and net-zero procurement by 2050

Applies to projects using 50 CY or more, or DOT projects at 300 CY plus

agon - all have Buy-Clean policies. CA plans to cut emission 40% per ton of cement over 2019 levels by 2035

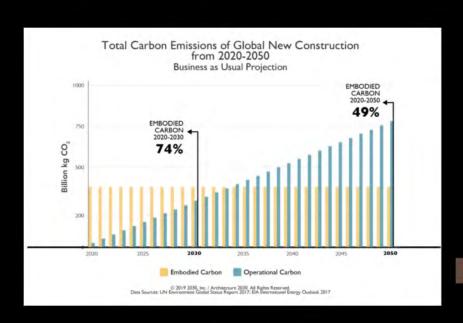
Portland and NVS - instrumental in Low-Carbon Concrete initiatives and Specifications

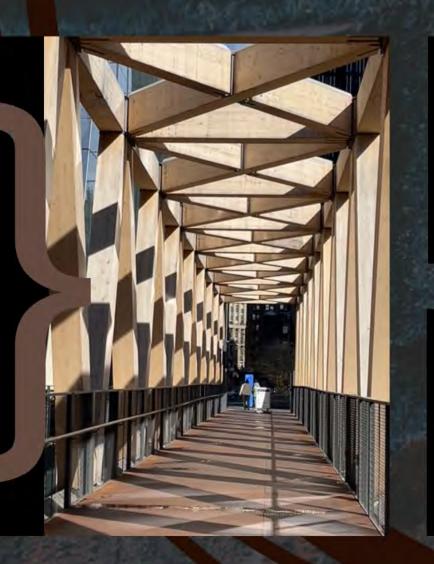
Boston and MA - EO-594 of decarb of government, Boston Deconstruciton Initiative and Mass Timber Accelerator (from CLF Northeast Embodied Carbon Policy Case Studies Report)

Denver - two proposed amendments to its building code that address embodied carbon, specifically requiring EPDs and setting limits for concrete and steel

All Over the Place -

In May of 2022, over 50 large corporations pledged to buy low carbon steel, cement, aluminum, etc. (Microsoft, Salesforce, Google to name a few).


Green Procurement Pledge -


In 2022, the United Nations Industrial Deep Decarbonisation Initiative announced this Global Coalition of governments

Embodied Energy is AS IMPORTANT as Operational Energy regarding emissions.

Policies at Federal and State

Federal, State, and Municipal-level policies are in place - all over the place!

- USA Federal Government has purchasing power of over \$630 Billion a year.

 Focused on EPDs and reduced limits for preferential purchasing.

 Affecting 150 IRA projects (announced Docember 2023)

 Building on lessons from 11-project pilot phase during which over 5,000 new EPDs were created.

 Goals include a net-zero emission Federal Building Portfolio by 2045, and net-zero procurement by 2050

Applies to projects using 50 CY or more, or DOT projects at 300 CY plus

agon - all have Buy-Clean policies. CA plans to cut emission 40% per ton of cement over 2019 levels by 2035

Portland and NVS - instrumental in Low-Carbon Concrete initiatives and Specifications

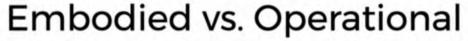
Boston and MA - EO-594 of decarb of government, Boston Deconstruciton Initiative and Mass Timber Accelerator (from CLF Northeast Embodied Carbon Policy Case Studies Report)

Denver - two proposed amendments to its building code that address embodied carbon, specifically requiring EPDs and setting limits for concrete and steel

All Over the Place -

In May of 2022, over 50 large corporations pledged to buy low carbon steel, cement, aluminum, etc. (Microsoft, Salesforce, Google to name a few).

Green Procurement Pledge -


In 2022, the United Nations Industrial Deep Decarbonisation Initiative announced this Global Coalition of governments

Total Carbon Emissions of Global New Construction from 2020-2050 Business as Usual Projection

Policies at Federal and State

Federal, State, and Municipal-level policies are in place - all over the place!

Buy-Clean -

USA Federal Government has purchasing power of over \$630 Billion a year.

- Focused on EPDs and reduced limits for preferential purchasing.
- Affecting 150 IRA projects (announced December 2023)
- Building on lessons from 11-project pilot phase during which over 5,000 new EPDs were created. Goals include a **net-zero emission Federal Building Portfolio by 2045**, and net-zero procurement by 2050

NYS Buy-Clean Concrete -

Applies to projects using 50 CY or more, or DOT projects at 300 CY plus

California, Colorado, and Oregón - all have Buy-Clean policies. CA plans to cut emission 40% per ton of cement over 2019 levels by 2035

Portland and NYS - instrumental in Low-Carbon Concrete initiatives and Specifications

Boston and MA - EO-594 of decarb of government, Boston Deconstruciton Initiative and Mass Timber Accelerator (from CLF Northeast Embodied Carbon Policy Case Studies Report)

Denver - two proposed amendments to its building code that address embodied carbon, specifically requiring EPDs and setting limits for concrete and steel

Policies at Federal ar

Federal, State, and Municipal-level policies are in

Buy-Clean -

USA Federal Government has purchasing po

- Focused on EPDs and reduced limits for
- Affecting 150 IRA projects (announced I
- Building on lessons from 11-project pil Goals include a net-zero emission Federa

NYS Buy-Clean Concrete -

Applies to projects using 50 CY or more,

California, Colorado, and Oregon - all have cement over 2019 levels by 2035

Portland and NYS - instrumental in Low-O

Boston and MA - EO-594 of decarb of govern Accelerator (from CLF Northeast Embodied Ca

Denver – two proposed amendments to its building requiring EPDs and setting limits for concrete and st

NYS Jan 2025 Mandatory
documentation on GWP
of concrete used.

hreshold a									
Source unit			-	2500	3000	4000	5000	6000	600
NRMCA GWP E2-Eastern LCA, V 3.2 kg C	O2e/cubic yard			183.29	201.48	240.22	289.03	305.26	360,5
150% of NRMCA kg C	O2e/cubic yard			275	302	360	434	458	54:
NRMCA GWP E2-Eastern LCA, V 3.2 (202	Sept 2023	kg CO2e/cubic yard kg CO2e/cubic yard	275	302	360	289.03 434	905.26 458	360.51	
150% of NRMCA									
US GSA Interim IRA Low Embodied Carbon Concrete Requirements "Better Than Average" GWP limits	May 2023	kgCO2e/cubic yard	276	318	352	382	407	402 (for >7200	

Phase 1 - Voluntary limits + EPDs from Jan 2024

Phase 2 - Mandatory for both from Jan 2025

Phase 3 - Revised mandatory limits from Jan 2027

All Over the Place -

First Movers Coalition -

In May of 2022, over 50 large corporations pledged to buy low carbon steel, cement, aluminum, etc. (Microsoft, Salesforce, Google to name a few).

Green Procurement Pledge -

In 2022, the United Nations
Industrial Deep Decarbonisation
Initiative announced this Global
Coalition of governments

All Over the Place -

ASHRAE/ICC 240P

Purpose: The purpose of this standard is to provide a methodology to quantify and document greenhouse gas emissions associated with buildings, building systems, and building equipment and their sites over their life cycle.


SEI PreStandard

Purpose: The purpose of <this Prestandard> is to establish a standard of practice for assessing the embodied carbon of structural systems and making comparisons between structural systems. As components of a building or similar structure.

licy Toolkit

ENVIRONMENTAL PRODUCT DECLARATION
Mix S63C650S1 • Vernor Plant

This Environmental Product Declaration (EPD) reports the impacts for 1 m³ of ready mixed concrete mix, meeting the following specifications:

- + ASTM C94: Ready-Mixed Concrete
- . UNSPSC Code 30111505: Ready Mix Concrete
- CSA A23.1/A23.2: Concrete Materials and Methods of Concrete Construction
- CSI Division 03-30-00: Cast-in-Place Concrete

COMPANY

National Ready Mix

15821 Ventura Boulevard, Suite 475 Endino, CA 91436

PLANT

Vernon Plant

2626 26th Street Vernon, CA 90058

EPD PROGRAM OPERATOR

ASTM International

100 Barr Harbor Drive West Conshohocken, PA 19428

DATE OF ISSUE

04/03/2020 (valid for 5 years until 04/03/2025)

ENVIRONMENTAL IMPACTS

Declared Product:

Mix S63C650S1 - Vernon Plant

Description: 1 4000PS(PLIP)

Compressive strength: 4000 PSI at 28 days

Declared	Unit: 1	m3 of	concrete

Global Warming Potential (kg CO ₂ -kg)	247
Ozone Depletion Potential (kg CFC-11-eq)	8.67E-6
Acidification Potential (kg SO ₂ -eq)	1.12
Eutrophication Potential (kg N-eq)	0.31
Photochemical Ozone Creation Potential (kg Oyeru)	20.7
Ablotic Depletion, non-fossil (kg Sb-eq)	2.64E-6
Abiotic Depletion, fossil (NU)	397
Total Waste Disposed (kg)	1,85
Consumption of Freshwater (m ³)	3.06

cement (ASTM C989), Portland cement (ASTM C150), admixture (ASTM C494), batch water (ASTM C4602)

Additional detail and impacts are reported on page three of this EPD

Sustainability in Building Construction — Environmental Declaration of Building Products; serves as the core PCR PCR for Concrete, NSF International, February 2019 serves as the sub-category PCR

Sub-category PCR review was conducted by Thomas P. Glona - Industrial Ecology Consultants

Independent verification of the declaration, according to ISO 14025:2006: □ Internal ☑ external

Third party verifier Thomas P. Glona (t.glonin@industrial-ecology.com) - Industrial Ecology Commission

For additional explanatory material

Manufacture Representative: John Halverson (JHalvemon@natoum.com)
Software Tool: CarbonCLARITY Suite, EPD Generator • Verification
LCA & EPD Developer Climate Earth (tupport@climateearth.com)

Simple shifts, NOW

- 1) Compare Performance (should match)
- 2) Compare GWP
- 3) Check expiration date!
- Confirm uncertainty of methodology (industry average or manufacturer, fuel sources, location?)
- 5) Compare Primary Sources (should match)

from climate earth

Also, EPDs are about MORE than GWP. Never stop learning!

NATIONAL READY MIX

ENVIRONMENTAL PRODUCT DECLARAT

This Environmental Product impacts for 1 m³ of ready following specifications:

- ASTM C94: F
- . UNSPSC Co
- CSA A23.1
 Concrete C
- . CSI Divisi

COMPANY

National R

15821 Veni Encino, CA

PLANT

Vernon Pl 2626 26th

Vernon, CA

EPD PROC

ASTM Intern

100 Barr Harbo West Conshoho

DATE OF ISSU

04/03/2020 (valid fo

In Nature, nothing exists alone.

Rachel Carson

Waste does not exist in nature because ecosystems reuse everything that grows in a never-ending cycle of efficiency and purpose.

Frans van Houten

You can't have a better tomorrow if you are thinking about yesterday all the time.

Charles Kettering

Sub-category PC

Independent verification

Third party verifier Thomas P. Glorid

For additional ex

Manufacture Representative: John Halverso

Software Tool: CarbonCLARITY Suite, EPD Generalor • varnesseses LCA & EPD Developer: Climate Earth (support@climateearth.com)

Simple shifts, NOW

- 1) Compare Performance (should match)
- 2) Compare GWP
- 3) Check expiration date!
- 4) Confirm uncertainty of methodology (industry average or manufacturer, fuel sources, location?)
- 5) Compare Primary Sources (should match)

from climate earth

Also, EPDs are about MORE than GWP. Never stop learning!

from steel studs to wood studs. ·A steel stud is 400 times as thermally conductive as a wood stud. •A steel stud has 12 times the embodied carbon as a wood stud!

Tips to Accelerate:

Steel -

- · Look for arc-furnace process over blast furnace.
- · Tighten or change traditional designs.
- · Design to actual structural needs one size does NOT fit all.

Concrete -

- · Use SCMs at 20-25% replacement always: GGP, Fly Ash, Slag.
- · Use specific strength and profile needs for structural members.
- · Extend cure time when possible.
- Specify PLC (10% lower GWP than Portland Cement).



Flat Glass -

- Choose less impactful frames.
- · Design for needed glass for views and light.
- more is not always better.
- · Curved and coated glass has slightly more embodied carbon.

Asphalt -

- · Calculate using Life Cycle
- · 100% recyclable.
- · Specify full-depth reclamation for better strength and high re-use.
- · Specify warm applications instead of hot.

Cementitious Materials: Use the following cementitious materials or th Portland Cement: ASTM C 150, Type I/II. Fly Ash: ASTM C 618, Class F or C, with loss on ignition less than 6 percent Slag Cement: ASTM C 989, Grade 100 or 120.

CANTILEVER STEEL ROOF BEAM SYSTEM

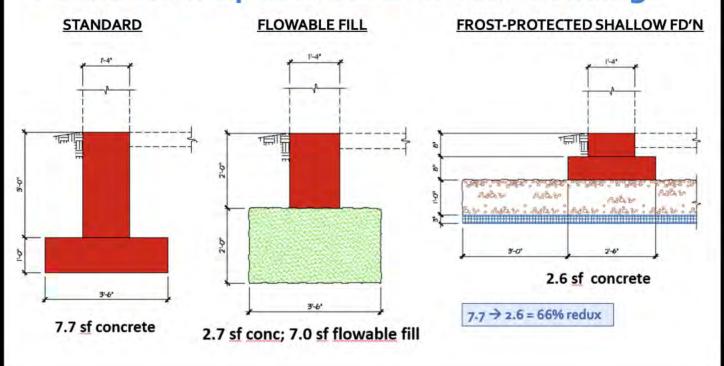
~20% reduction in steel tonnage compared to pin-connected members

Steel -

- Look for arc-furnace process over blast furnace.
- Tighten or change traditional designs.
- Design to actual structural needs one size does NOT fit all.

Concrete -

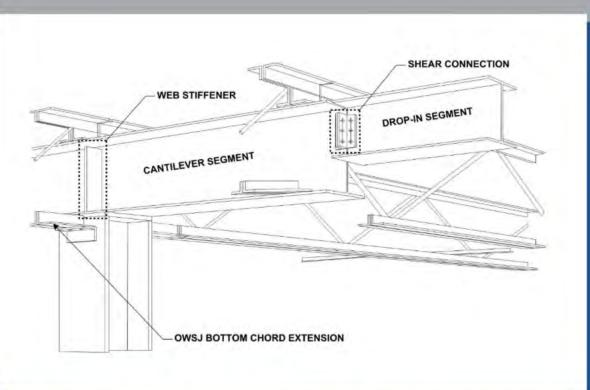
- Use SCMs at 20-25% replacement always: GGP, Fly Ash, Slag.
- Use specific strength and profile needs for structural members.
- Extend cure time when possible.
- Specify PLC (10% lower GWP than Portland Cement).

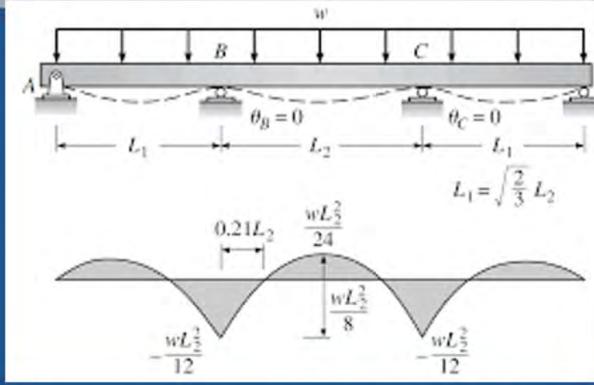

Flat Glass ·

- Choose
- Design f
 - more i
- Curved a embodie

Asphalt -

- Calculat
- 100% re
- Specify strength
- Specify

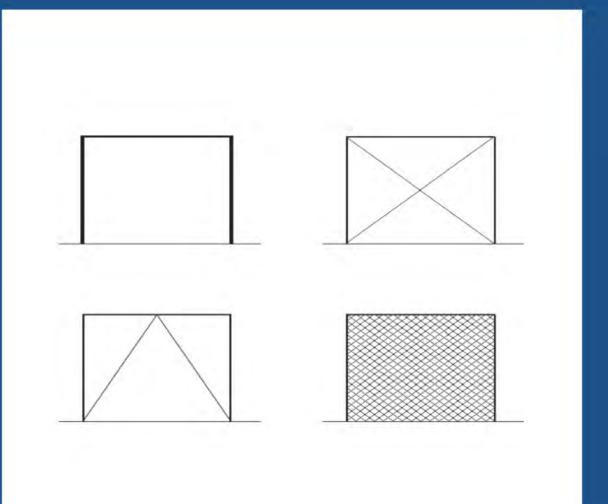

Foundation Options for Low-Rise Buildings



2.4 CONCRETE MATERIALS

- A. Cementitious Materials: Use the following cementitious materials or the same type, brand, and source throughout Project:
 - 1. Portland Cement: ASTM C 150, Type I/II.
 - Fly Ash: ASTM C 618, Class F or C, with loss on ignition less than 6 percent.
 - Slag Cement: ASTM C 989, Grade 100 or 120.
 - Blended Hydraulic Cement: ASTM C 595 Type IL.D

CANTILEVER STEEL ROOF BEAM SYSTEM


~20% reduction in steel tonnage compared to pin-connected members

STEEL LATERAL BRACING SYSTEMS

Steel Moment Frames require more steel material per service unit than braced frames.

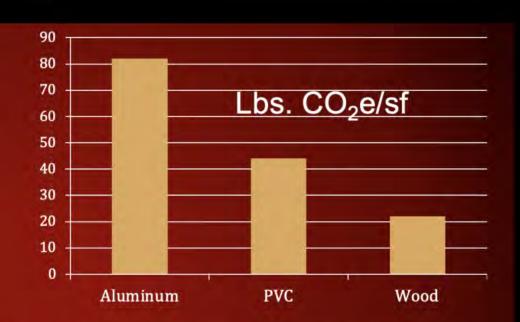
Braced Frames can be designed in a variety of configurations.

Consider Hybrid Masonry/Steel Frames.

Flat Glass -

- Choose less impactful frames.
- Design for needed glass for views and light.
 - more is not always better.
- Curved and coated glass has slightly more embodied carbon.

Asphalt -


- Calculate using Life Cycle
- 100% recyclable.
- Specify full-depth reclamation for better strength and high re-use.
- Specify warm applications instead of hot.

WINDOW FOOTPRINTS

 $1 \text{ m}^2 \text{ of } \frac{\text{window pane}}{\text{window pane}} = 10.76 \text{ sf}$

add for frame = 12.9 say 13 sf

1 kg = 2.2 lbs. 1 m = 3.28 feet

• **Aluminum** $486 \text{ kg} = 1070 \text{ lbs.} /13 \text{ sf} = 82 \text{ lbs. } CO_2 e/\text{sf}$

• **PVC** 258 kg = 568 lbs. / 13 sf = 44 lbs. CO_2e/sf

• **Wood** 130 kg = 286 lbs. $/ 13 \text{ sf} = 22 \text{ lbs. } CO_2 e/\text{sf}$

Source: http://www.mdpi.com/2075-5309/2/4/542/htm

CARBON MANAGEMENT HIERARCHY

AVOID

Avoid carbon intensive activities

REDUCE

Increase energy efficiency, reuse, and reduction of material use

REPLACE

Replace high carbon sources or activities with low carbon solutions including materials and products

OFFSET

Sequester or offset unavoidable emmissions that cannot be eliminated by the above

Start by doing what is necessary, then what is possible, and suddenly you are doing the impossible.

St. Francis of Assisi

Thank you!

Jodi Smits Anderson, FAIA New Buildings Institute jodi@newbuildings.org 518-229-3215

Jim D'Aloisio, PE, Principal Klepper, Hahn & Hyatt JAD@khhpc.com 315-446-9201

Start by doing what is necessary, then what is possible, and suddenly you are doing the impossible.

100,000 sf, 10-Story Mixed-Use Building

Transformative – structure only INCLUDING BIOGENIC CARBON and END-OF-LIFE IMPACTS

MATERIAL							lbs. CO2e/lb.	lbs. CO2e	
5-ply CLT (67/8") roof and floor decking	100,000	sf	17.8	psf	1,776,042	lbs.	-0.67	(1,189,948)	
7-ply CLT (9 5/8) wall panels 20% WWR	39,936	sf	24.9	psf	992,992	lbs.	-0.67	(665,305)	
Glulam roof and floor beams - 5 1/2" x 14"	12,000	lf	20.9	plf	250,250	lbs.	-0.72	(180,180)	
Glulam columns - est. 12 int, avg. 5 1/2" X 16"	1,440	lf	22.2	plf	31,964		-0.72	(23,014)	
Steel composite floor ties	90,000	sf	1.2	psf	108,000		2.53	273,240	
Steel conn hardware for glulam, 10 lbs. ea.	1,680	pcs	10	lbs.	16,800		1.62	27,216	
2-10th fl. conc - 2" t, 3000 psi, 50% SCM	90,000	sf	556	су	2,166,667	lbs.	0.12	260,000	
Shear walls, 80 lf, 12"t, 4000 psi, 50% SCM	9,600	sf	356	су	1,386,667	lbs.	0.19	263,467	
1st floor conc slab - 4" 2500 psi, 50% SCM	10,000	sf	123	су	481,481	lbs.	0.11	52,963	
Strip ftgs, FPSF fd'n walls, 3500 psi, 50% SCM	2,704	sf	133	су	519,468	lbs.	0.13	67,531	
Int. ft'gs, optimized 3500 psi, 50% SCM	768	sf	34	су	133,120	lbs.	0.13	17,306	
Steel rebar, assume 0.7% conc vol.	8.4	су	227	cf	114,261	lbs.	0.94	107,405	
								(989,320)	lbs. CO₂e
								(9.89)	psf

Start by doing what is necessary, then what is possible, and suddenly you are doing the impossible.

St. Francis of Assisi

Thank you!

Jodi Smits Anderson, FAIA New Buildings Institute jodi@newbuildings.org 518-229-3215

Jim D'Aloisio, PE, Principal Klepper, Hahn & Hyatt JAD@khhpc.com 315-446-9201

