# **BUILDINGENERGY BOSTON**

# Monitored VRF Performance in New Multifamily Buildings

Dylan Martello (Steven Winter Associates) Shari Rauls (Steven Winter Associates)

Curated by Tammy Ngo (BR+A)

Northeast Sustainable Energy Association (NESEA) | March 20, 2024

Since 1972, Steven Winter Associates, Inc. has been providing research, consulting, and advisory services to improve the built environment for private and public sector clients.

Our services include:

- Energy Conservation and Management
- Decarbonization
- Sustainability Consulting
- Green Building Certification
- Accessibility Consulting

Our teams are based across four office locations: New York, NY | Washington, DC | Norwalk, CT | Boston, MA

For more information, visit www.swinter.com



construction, and

operation

**Steven Winter Associates, Inc.** Improving the Built Environment Since 1972

## **Research Funding**

- This material is based upon work supported by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Building Technologies Office under Award Number EE-0008695
- The work presented in this EERE Building America report does not represent performance of any product relative to regulated minimum efficiency requirements
- The laboratory and/or field sites used for this work are not certified rating test facilities. The conditions and methods under which products were characterized for this work differ from standard rating conditions, as described
- Because the methods and conditions differ, the reported results are not comparable to rated product performance and should only be used to estimate performance under the measured conditions





### Scope

- Data Collection: May 2023 March 2024
  - Temperature + humidity
  - VRF output
  - ERV
- Data Analysis cooling season
  - Equipment sizing
  - VRF cycling
  - Temperature + humidity control



- How does the sizing of equipment affect humidity control in apartments?
- During peak cooling conditions, how does equipment sizing affect VRF cycling?
- How often did indoor dew point temperatures exceed 60°F? & How often did relative humidity within apartments exceed 60%?
- How much electric energy was consumed by the VRF systems during cooling season?



### Buildings Monitored in NYC

### **Building A** Passive House, Affordable



### **Building B**

Passive House, Affordable



**Building C** LEED NC, Market Rate



# Building A Description

| Building             | А                                                 |
|----------------------|---------------------------------------------------|
| Location             | The Bronx                                         |
| Туре                 | Affordable                                        |
| Certification        | PHIUS+ 2018                                       |
| # of units           | 280                                               |
| # of units monitored | 68                                                |
| # of Stories         | 26                                                |
| VRF                  | Mitsubishi Heat Recovery<br>Ducted + Ductless IDU |
| Ventilation          | 4 ERVs each serving 70 apartments                 |



7

## Building B Description



| Building             | В                               |
|----------------------|---------------------------------|
| Location             | East Harlem                     |
| Туре                 | Affordable                      |
| Certification        | PHI                             |
| # of units           | 85                              |
| # of units monitored | 27                              |
| # of Stories         | 10                              |
| VRF                  | Daikin<br>Ducted + Ductless IDU |
| Ventilation          | 2 ERVs serving all apartments   |

## Building C Description

| Building             | С                                      |  |
|----------------------|----------------------------------------|--|
| Location             | The Bronx                              |  |
| Туре                 | Market Rate                            |  |
| Certification        | LEED NC                                |  |
| # of units           | 458                                    |  |
| # of units monitored | 57 total, 24 humidity only             |  |
| # of Stories         | 26                                     |  |
| VRF                  | Mitsubishi Heat Recovery<br>Ducted IDU |  |
| Ventilation          | Exhaust only in apartments             |  |



### Methodology



### Data Collection – Ducted systems



### Monnit temperature and humidity sensors



## Data Collection – Ductless systems



# ERV Building B







# Load and Sizing Analysis



### Cooling Load Drives Sizing







# Building A: Cooling Load Analysis

• SWA IDU Design Cooling Load • MEP IDU Design Cooling Load



# Building C: Cooling Load Analysis

SWA IDU Design Cooling Load
MEP IDU Design Cooling Load

## Internal Gains of Typical 1-Bedroom Apt

| Duilding | Design Internal Gains [Btu/h] |       |            |
|----------|-------------------------------|-------|------------|
| Building | Designer                      | SWA   | Difference |
| В        | 3,480                         | 1,340 | +2,140     |
| С        | 3,410                         | 1,230 | +2,180     |

## Load Calculation Analysis

| Building | MEP Design Loads /<br>SWA Design Loads |  |
|----------|----------------------------------------|--|
|          | Cooling                                |  |
| А        | 1.06                                   |  |
| В        | 2.10                                   |  |
| С        | 1.78                                   |  |



# Building A: Outdoor Unit Sizing





20

# Building A: Outdoor Unit Sizing





# Building B: Outdoor Unit Sizing





22

# Building B: Outdoor Unit Sizing





# Building C: Outdoor Unit Sizing



• Sum of SWA apartment cooling loads • Sum of MEP apartment cooling loads • ODU Design Cooling Capacity



# Building C: Outdoor Unit Sizing



• Sum of SWA apartment cooling loads • Sum of MEP apartment cooling loads • ODU Design Cooling Capacity



## Building A: Indoor Unit Sizing

• MEP Cooling Load • IDU Design Cooling Capacity • IDU Nominal Cooling Capacity



# Building A: Indoor Unit Sizing

• MEP Cooling Load • IDU Design Cooling Capacity • IDU Nominal Cooling Capacity



# Does Sizing Affect Cycling + Humidity?



### Sizing Affecting Cycling Larger Capacity = More Cycling + Shorter Cycle Lengths



29

### Cycle Length to Dewpoint Correlation Longer Cycle Lengths = Lower Dewpoint



30

## No Relationship between Sizing and Dewpoint



How does the sizing of equipment affect humidity control in apartments?



How does the sizing of equipment affect humidity control in apartments?

Not as much as we thought! Though VRF units that have short cycle lengths show some correlation with higher apartment dew points



# Humidity Analysis



## Why We Look At Dewpoint

Dewpoint is a direct measure of moisture content in air.

Relative humidity truly is relative (to temperature)!

Dewpoint takes away the "relativity". Thus, easier for apples-to-apples comparison of humidity / moisture levels.

| Examples                      |     |           |  |
|-------------------------------|-----|-----------|--|
| Temperature Relative Humidity |     | Dew Point |  |
| 68°F                          | 52% | 50°F      |  |
| 70°F                          | 60% | 55°F      |  |
| 77°F                          | 47% | 55°F      |  |
| 77°F                          | 64% | 64°F      |  |
| 68°F                          | 86% | 64°F      |  |



## Why We Look At Dewpoint

Dewpoint is a direct measure of moisture content in air.

Relative humidity truly is relative (to temperature)!

Dewpoint takes away the "relativity". Thus, easier for apples-to-apples comparison of humidity / moisture levels.

|             | Examples                 |           |              |
|-------------|--------------------------|-----------|--------------|
| Temperature | <b>Relative Humidity</b> | Dew Point | Comfortable? |
| 68°F        | 52%                      | 50°F      |              |
| 70°F        | 60%                      | 55°F      |              |
| 77°F        | 47%                      | 55°F      |              |
| 77°F        | 64%                      | 64°F      |              |
| 68°F        | 86%                      | 64°F      |              |

## Why We Look At Dewpoint

Dewpoint is a direct measure of moisture content in air.

Relative humidity truly is relative (to temperature)!

Dewpoint takes away the "relativity". Thus, easier for apples-to-apples comparison of humidity / moisture levels.

|             | Examples                 |           |              |
|-------------|--------------------------|-----------|--------------|
| Temperature | <b>Relative Humidity</b> | Dew Point | Comfortable? |
| 68°F        | 52%                      | 50°F      | ÷            |
| 70°F        | 60%                      | 55°F      | $\odot$      |
| 77°F        | 47%                      | 55°F      |              |
| 77°F        | 64%                      | 64°F      |              |
| 68°F        | 86%                      | 64°F      |              |

### Importance of Having Thermostat On



# Importance of Having Thermostat On **Bldg. A**





# Importance of Having Thermostat OnBldg. ADewpoint vs. Thermostat ON Fraction



\_\_\_\_

40





### Importance of Having Thermostat On Bldg. C Dewpoint vs. Thermostat ON Fraction **Outdoor Dry Bulb** • 50 • 55 • 60 • 65 • 70 • 75 • 80 • 85 • 90 80 Apartment Dew Point [°F] 00 00 00 00 40 0.0 0.2 0.4 0.6 0.8 1.0 Average ON Fraction

42

**Thermostat Setpoints** 



# Thermostat Setpoints **Bldg. A**







# Thermostat Setpoints **Bldg. A**











### Apt. Type Influence on Apt. Dew Point



### Apt. Type Influence on Apt. Dew Point

| Bldg. Averages for All Monitored Apts. |         |         |         |
|----------------------------------------|---------|---------|---------|
|                                        | Bldg. A | Bldg. B | Bldg. C |
| Studios                                | 58.1    | 57.6    |         |
| 1 BR Apts.                             | 59.3    | 60.2    |         |
| 2 BR Apts.                             | 60.0    | 58.1    |         |
| 3 BR Apts.                             | 60.4    | n/a     |         |

How often did relative humidity within apartments exceed 60%?



How often did relative humidity within apartments exceed 60%?

A lot.







How often did relative humidity within apartments exceed 60%?

#### A lot.







53

40%

60%

80%

100%

How often did relative humidity within apartments exceed 60%? A lot.

Bldg. A



54

•90 20% Bldg. C How often did relative •85 40% ~50% humidity within apartments •80 60% exceed 60%? •75 80% A lot. •70 100% 65 0% 0% 60 20% • 55 20% Bldg. B **Bldg.** A • 50 40% 40% ~70% •45 ~55% 60% 60% •40 80% 80% • 35 100% •30

0%

55

•95

# VRF Performance

### **VRF performance - Summer**

### **Building C**

Rated COP = 3.3 per AHRI

Calculated summer COP = 1.7

No evidence that heat recovery increases efficiency of VRF





### **VRF performance - Summer**

#### **Building C**

Rated COP = 3.3 per AHRI Calculated summer COP = 1.7

No evidence that heat recovery increases efficiency of VRF

#### **Building A**

No COP data We do have energy data though







## **Building C – Summer COP**

- Capacity: 160 kBTU/h
- SWA Load Estimate: 72 kBTU/h
- Peak output <50% nominal capacity
- COP low at low load



### **Summer Energy Use Intensity**



60

### **Summer Energy Use Intensity**



61

## **VRF Performance Conclusions**

### • Oversizing increases EUI?

| Summer Cooling Comparison of Typical Floor |           |            |  |
|--------------------------------------------|-----------|------------|--|
| Building                                   | А         | С          |  |
| Design Load                                | 72 kBTU/h | 72 kBTU/h  |  |
| Nominal Capacity (ODU)                     | 72 kBTU/h | 168 kBTU/h |  |
| Capacity/Load: "Oversizing"                | 100%      | 230%       |  |
| Energy Use Intensity                       | 1X        | 8X         |  |



• Apartments are Humid!





### Apartments are Humid!

- ERV not running correctly
- VRF thermostats are off
  - Off 60% of the time on average
  - Used as an on/off switch
- IDU cycling
  - Shorter cycle lengths = higher dewpoints



### There is a correlation to sizing and VRF efficiency

- Building C has much higher VRF EUI than Building A
- COP in Building C is much worse when equipment is running at a lower capacity
- Account for diversity in outdoor unit sizing



## **Additional Research**

### **Additional Research**

- Analysis of Fall and Winter seasons
- DOE report later this year

### Unfunded Step 2

- Occupancy Survey
- Tenant Education

### Contact Us

Steven Winter Associates, Inc.

New York, NY | Washington, DC | Norwalk, CT | Boston, MA



Shari Rauls

Sustainability Consultant



srauls@swinter.com



203.585.3053



www.swinter.com

Dylan Martello

203.939.4945

dmartello@swinter.com

Senior Building Systems Consultant