March 2024

EVERSURCE

Utilities and Decarbonization: How It All Comes Together

Tilak Subrahmanian Kim Cullinane Ryan Willingham

Agenda

A Roadmap for Decarbonization

Energy Performance Targets, New Construction & Decarbonizing the Built Environment

Decarbonizing Existing Buildings

A Roadmap for Decarbonization

In 2008, MA Legislature passed the Green Communities Act

- Made energy efficiency the first fuel
- Provided the legal and regulatory frameworks for Mass Save
- Challenged us to scale energy efficiency

We responded and delivered.

We have a lot to be proud of Since 2012

2021 Climate Act in MA, prioritizes Decarbonization (Electrification)

2030 50% below 1990

2040 75% below 1990

2050 Net Zero > 300M sq. ft of commercial & industrial space on electric heat ~ 1 million homes on electric heat ~ 1 million vehicles converted to EVs

2030 Goals

5.9 Billion Square Feet

~65% built before 1980

80-90% USE FOSSIL FUEL FOR HEATING

Commercial Building Stock by Size

~80% of Buildings: ~25% of sq. ft ~20% of Buildings: ~75% of sq. ft

KEY QUESTIONS

1. What does this cost, and how do we pay for it?

2. What does a decarbonization roadmap

look like?

3. What about rate design to send

appropriate pricing signals

4. How do we ensure affordability?

5. Can the Electric Grid handle it?

Energy Performance Targets, New Construction and Decarbonizing the **Built Environment**

Significant Strides in New Construction

- New homes and buildings all-electric now required to qualify for Mass Save® support
- Nearly 15 million square feet of **Passive House Multi-Family** projects enrolled
- 5 million sf of net zero ready, ultra low energy **K-12 schools**, including 15 installing ground source heat pumps
- Numerous other best-in-class buildings e.g., BU Data Science Center (right), DCAMM's Chelsea Soldiers' Home, Winthrop Tower

Global Building Floor Area to Double by 2060

2020

2060

Source: International Energy Agency, "Global buildings sector CO₂ emissions and floor area on the Net Zero Scenario, 2020-2050". 2060 floor area assumes projected trends would continue.

Drivers of Low Carbon Buildings

mass save

NHSaves

Advancing Technologies

Heat Pumps

Induction Cooking

Local Policy Energy Codes/ Stretch Codes \bullet MA Climate Act and **Other State** Legislation

State &

Building Perf. Standards

Federal Policy

INFLATION REDUCTION ACT OF 2022

Biden's Goal: Net zero emissions economy by no later than 2050

Hurdle: Current Practice

Percent reduction relative to a theoretical baseline

Average EUIs in Massachusetts for Building types Greater than 50,000 SF

Performance Targets Lead to Better Buildings

Set **clear expectations** among project team members

Drive energy efficient and low carbon outcomes:

- Load Reduction
- Energy efficiency and equipment optimization
- Efficient electrification of building systems

Align with net zero and use of renewable energy sources

Eversource Support Path 1: Net Zero & Low EUI Buildings

ACTON-BOXBOROUGH DOUGLAS-GATES ELEMENTARY SCHOOL Opened Fall 2022 | All-electric

Intent: Focus On Performance

 Drive projects toward net zero, low carbon and low EUI in operation

Key Program Drivers: EUI And Low Carbon

- Target an ultra-low site EUI throughout design, construction and into first year of occupancy
- Building decarbonization

Net Zero Technical Support

- Net zero design support
- Mass Save Sponsors will pay 50% up to \$10,000
- Mass Save Sponsors will pay for optional Verification Incentive - 50% of fee up to \$10,000

Setting EUI Targets – Input

EUI by Building Type

Building Type	Net Zero Level EUI Targets
Hotel	Tier 1: 35 or less Tier 2: 36-40
K-12 School	Tier 1: 25 or less Tier 2 (high schools only): 26-29
Library	Tier 1: 30 or less Tier 2: 31-35
Office	Tier 1: 30 or less Tier 2: 31-35
Fire/Police Station	Tier 1: 35 or less Tier 2: 36-40
Other Sectors	Use 25 or set unique target

Combined Knowledge and Experience

City of Boston Data New Buildings Institute Data Eversource Project Experience

Path 1: Zero Net Energy/Deep Energy Savings

Territory	Construction	Post Occupancy	Heat Pump Adder
СТ	Up to \$2.50/sf	\$1.50/sf	Air Source Heat Pumps: \$640/ton (\$400,000 cap) Variable Refrigerant Flow (VRF): \$1,000/ton (\$500,000 cap)
			Ground Source Heat Pumps: \$4,000/ton (\$600,000 cap)
МА	Up to \$2.00/sf	\$1.50/sf	Air Source Heat Pumps: \$800/ton Variable Refrigerant Flow (VRF): \$1,200/ton Ground Source Heat Pumps: \$4,500/ton
NH	Up to \$1.50/sf	\$1.00/sf	N/A

Results: Massachusetts Path 1 Projects by Type

Path 1 Projects	Project Count	Square Footage
K-12 Schools	3	4,988,653
Public Safety		3 68,145
Library		6 223,877
Office		2 114,280
College or University		2 217,000
Other	1	.0 865,114
Total	5	6,477,069

Results

Five Path 1 projects through construction in MA; 1 in CT, 1 in NH

Early data suggest projects are tracking at or under their target EUI in operation

Where improvements are needed, troubleshooting and corrective action are taking place early

Advantages

Policymakers

Designers

More direct mechanisms to meet carbon goals Streamlined design and analysis Sets clear expectations for the design team

Future-proofing new construction

Informs better designs through data

Better building performance

Challenges

Less flexible for unique project types More effort post occupancy

Accurately modeling occupancy and equipment schedules takes more effort

Set measurable energy or carbon intensity targets as early as possible in design process

Track progress toward the targets throughout design

Measure results post construction and take corrective action where needed

Integrate lessons learned into future designs

Fully train and engage building occupants and operators

Decarbonizing Existing Buildings

Existing Buildings Are Key

Over 80% of the current buildings will exist in 2050

We Have Begun Transforming the Residential Heating Market

- Established Heat Pump Installer Network with 1,500+ qualified HVAC companies in Massachusetts
- Promoted network at approximately 100 in-person industry events/trainings.
- 2,000 + customer consultations completed.
- **4,000 + contractor trainings** through our eLearning Centers
- 1,500+ heat pump quality inspections completed.

Small Commercial

Lots of small, almost residential scale buildings – small offices, restaurants, religious, retail, service

Prescriptive HP Projects by Building Type

Large Commercial

Small number and large footprint

Complex systems, **pre-defined workspace**

Internal and external motivation

Energy Efficiency

Reducing waste is the most effective decarbonization tool Lower loads = less clean energy needed

Strong value proposition (R.O.I.)

Roof Top Units (RTU) single-zone

Building Types

- Big Box Stores
- Retail
- Restaurants
- Strip Malls
- Warehouses

- Hybrid solutions only
- Align with replacement timeline
- Electrical infrastructure

Roof Top Units (RTU) single-zone

Building Types

- Big Box Stores
- Retail
- Restaurants
- Strip Malls
- Warehouses

- Hybrid solutions only
- Align with replacement timeline
- Electrical infrastructure

Roof Top Units (RTU) & Terminal Units (TU)

Building Types

- Office Buildings
- Hospitals
- Municipal Buildings

- Roof Top Unit
 - Hybrid solutions only
 - Align with replacement timeline
 - Electrical infrastructure
- Terminal units
 - Disruptive and costly retrofit
 - Electric resistance heating

*may be heating only

*may be heating only

Water source heat pumps (WSHP) and Make up air unit (MAU)

- Water loop temperature < 100F
- Limited decarbonization potential
- Electrical infrastructure

Elementary School Electrification Opportunities Beyond Space Heating

Geothermal: Ground Source Heat Pump

School HVAC Replacement

Option	Estimated Gross Install Cost	Estimated Utility Incentives	Estimated Federal Incentives	Estimated net install cost
Replace in-kind (oil boiler)	\$1.15M	\$0	\$0	\$1.15M
Ground-source heat pump	\$3.65M	\$0.962M	\$1.825M	\$0.863M

Non-Energy GHG Reducing Measures Decarbonize Today – Carbon Capture and Sequestration (CCUS)

CHP market potential

- ~125 CHPs in the MA
 - emitting ~4M metric tons CO₂e annually
- Customers with newer systems unlikely to abandon them so early
- Reducing thermal load via partial electrification reduces efficiency

Non-Energy GHG Reducing Measures Decarbonize Today CCUS example (CHPs)

Carbon Capture, Utilization and Sequestration (CCUS)

- Target "hard to electrify" uses \rightarrow CHPs and fuel cells
- Market in infancy; scalability TBD

Non-Energy GHG Reducing Measures Decarbonize Today CCUS example (CHPs)

Carbon Capture, Utilization and Sequestration (CCUS)

- Target "hard to electrify" uses \rightarrow CHPs and fuel cells
- Market in infancy; scalability TBD

Non-Energy Reducing GHG Measures

- Carbon capture, sequestration, and utilization
- Embodied carbon of building materials
- Gas leak mitigation
- Refrigerant leak mitigation and swap out

Questions