

Airtightness Testing in Large Buildings: NESEA 2016

Dr John Straube, P.Eng.

Associate Professor, University of Waterloo Principal, RDH Building Science

This session:

- why would one invest in airtightness testing for a large building,
- how the testing is done,
- how the results are interpreted, and
- how this information can be used

Why airtightness?

- Comfort
- Health
- Moisture
- Energy
- Code

• Standards (e.g. ASHRAE, PassivHaus)

Enclosure – HVAC interaction

- Without estimate of airtightness:
 - How to size equipment?
 - How to predict energy use?
- Pressurization / depressurization
 - Significant operational implications
- Old buildings were leaky and this did not matter

Measuring Airtightness

- Usually use ASTM E779 /E1827 (in North America)
- May use building airhandler if flow can be measured accurately (e.g. CGSB)
- Buildings over 800 000 sf and 30 stories have been tested to date
- USACE has best protocol IMHO, supported by best ASHRAE research

Excellent Reference.

http://www.wbdg.org/pdfs/usace_airleakagetestprotocol.pdf

US Army Corps of Engineers® Engineer Research and Development Center

U.S. Army Corps of Engineers Air Leakage Test Protocol for Building Envelopes

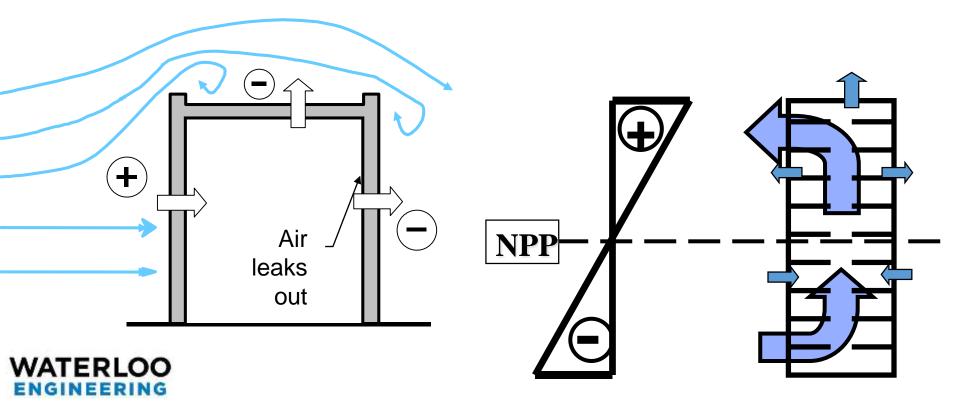
Version 3 - May 11, 2012

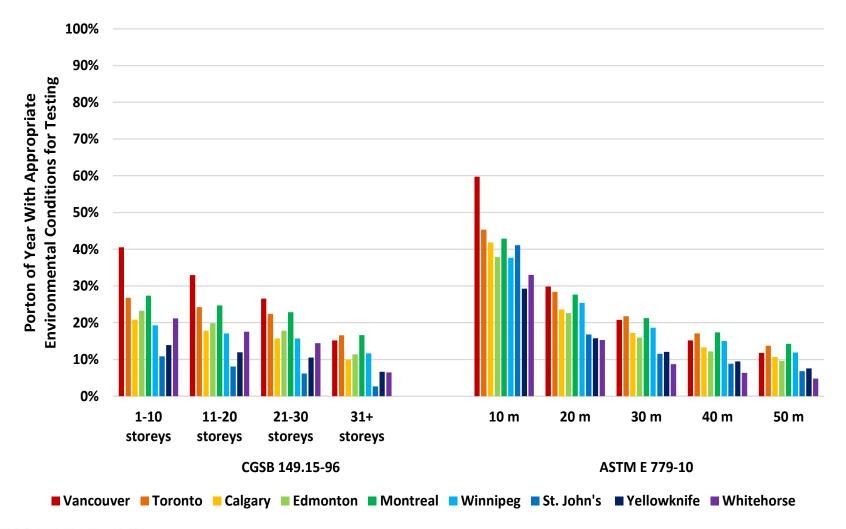
CGSB	CGSB	ASTM	ASTM	ISO		ATTMA Technical Standard	· · · · · · · · · · · · · · · · · · ·
149.10 - M86	149.15 - 96	E 779 - 10	E 1827 - 11	9972:2012	USACE	L2	ABAA (unreleased)
Canada	Canada	USA	USA	International	USA	United Kingdom	USA
Small detached but adaptable for larger buildings	Buildings with air handling systems	Single zone buildings	Single zone buildings	Single zone buildings	All buildings	Non-Dwellings	All buildings
Wind < 20 km/hr (5.6 m/s)	Wind < 20 km/hr (5.6 m/s) Temperature limit depending on building height	ΔT x Height < 200 m°C	Wind < 2 m/s 5°C ≤ T ≤ 35°C	Wind at Ground < 3 m/s Wind at Station < 6 m/s Wind < 3 on Beaufort Scale ΔT x Height < 250 m·K	Max. Baseline Pressure < 30% of minimum induced pressure difference	ΔT x Height < 250 m·K Baseline <±5 Pa	None, but minimum pressure determined based on baseline or stack presures.
Before and After (no duration provided)	Before and After (no duration provided)	Before and After for min. 10 s	Before and After (no duration provided)	Before and After	Before and After (12 measurements each time for min. 10 sec each)	Before and after for min. 30 sec	Before and after for 120 sec
15 Pa to 50 Pa	Not provided	10 to 60 Pa	Single-Point: 50 Pa Two-Point: 50 Pa & ≈12.5 Pa	At least one > 50 Pa, with allowance for 25 Pa in large buildings (Recommend 10 Pa (or 2 x baseline) to 100 Pa at maximum 10 Pa increments)	Min. Range of 25 Pa One-Sided: > 50 Pa to > 75 Pa Two-Sided: > 40 Pa to > 75 Pa Max ≤ 85 Pa	Min. is greatest of 10 Pa or 5 x Baseline Max. is > 50 Pa Range > 25 Pa	Min is greatest of "Baseline + 10 x baseline std. dev.", "Stack pressure / 2", and 10 Pa. Max. is < 100 Pa Range > 25 Pa
8 (duration not provided)	4 (duration not provided)	>5 for min. 10 sec	Single-Point: 5 at 50 Pa Two-Point: 5 at each of 50 Pa & 12.5 Pa (no duration provided)	> 5 (duration not provided)	10 for min. 10 sec	7 at < 10 Pa jor (no durat [*]	> 10
Depressurize	Either	Both	Either	Both	Both	adair	Either
Depressurize	Either	Both Required	Either	Either	Both (either for v	Either	Either
C, n, EqLa, NLA	C, n, Q ₅ , Q ₅₀ , Q ₇₅	C, n, EfLA (or other) for both pressurization, depressurization, and average	Single-Point: Q ₅₀ Two-Point: C, n, EfLA, Q ₅₀	C, n for both pressurization and depressurization	ailables	C, n, Q ₅₀	
Schedule provided	Limited guidance	Close operable dampers	Schedule provided, with options	Schedule provid	-scription provided	Description provided	Schedule provided, with options
$0.50 \le n \le 1.00$				Main	0.45		0.45 ≤ n ≤ 1.05
R > 0.990 (Q _{regression} - Q _{measured})	0.50 ≤ n ≤ 1.00 R > 0.990	0.50 ≤ n ≤ 1.00	None provided. (Single and Two-Point tests do not provided sufficient	0.50 ≤ n ≤ 1.00	or Q ₇₅ < Requirement &	0.50 ≤ n ≤ 1.00	Max test pressure > 0.9
pressures Standard Error at	(Q _{regression} - Q _{measured}) /Q _{measured} < 0.06 L/s for all pressures		information for detailed precision analysis)	R ² > 0.98	95% CI < 0.02 cfm/ft ² at 75 Pa. R ² > 0.98	R ² > 0.98	specified target pressure Various 95% CI requirements for determination of pass or fail.
Includes allowance for pressure equalizing adjacent zones which is intended for ttached buildings, but could	not used in this method, flow rate must be measured	Indicates that a check of single zone conditions should be performed to ensure that the interior pressure differs by no greater than 5% of the test pressure.	Indicates that a check of single zone conditions should be performed to ensure that the interior pressure differs by no greater than 5% at the maximum test pressure and	Indicates that a check of single zone conditions should be performed to ensure that the interior pressure differs by no greater than 10% of the measured test pressure.	Indicates that a check of single zone conditions should be performed to ensure that the interior pressure differs by no greater than 10% at test pressure of 30 Pa. Contains allowance for testing zone	Indicates that a check of single zone conditions should be performed for buildings > 20 m tall to ensure that the interior pressure differs by no greater than 10% at test pressure of 50 Pa. Allowance	Indicates that a check of single zone conditions should be performed to ensure that the interior pressure differs by no greater than 10% of the measured test pressure.
	Canada Small detached but adaptable for larger buildings Wind < 20 km/hr (5.6 m/s) Before and After (no duration provided) 15 Pa to 50 Pa 8 (duration not provided) Depressurize Depressurize C, n, EqLa, NLA Schedule provided 0.50 ≤ n ≤ 1.00 R > 0.990 (Q _{regression} - Q _{measured}) /Q _{measured} < 0.06 L/s for all pressures Standard Error at 10 Pa < 0.07 L/s Includes allowance for ressure equalizing adjacent ones which is intended for ttached buildings, but could e adapted for zones within	149.10 - M86149.15 - 96CanadaCanadaSmall detached but adaptable for larger buildingsBuildings with air handling systemsWind < 20 km/hr (5.6 m/s)	149.10 - M86149.15 - 96E 779 - 10CanadaCanadaUSASmall detached but adaptable for larger buildingsBuildings with air handling systemsSingle zone buildingsWind < 20 km/hr (5.6 m/s) Temperature limit depending on building height $\Delta T \times Height < 200 m^{\circ}C$ Before and After (no duration provided)Before and After (no duration provided)Before and After for min. 10 s15 Pa to 50 PaNot provided10 to 60 Pa8 (duration not provided)4> 5 for min. 10 secDepressurizeEitherBothDepressurizeEitherBothC, n, EqLa, NLAC, n, Qa, Qago, Qago (Quegession - Quessured)C, n, EfLA (or other) for both pressurization, and averageSchedule providedLimited guidanceClose operable dampers0.50 ≤ n ≤ 1.00 (Quegession - Quessured)0.50 ≤ n ≤ 1.00 (Quegession - Quessured)0.50 ≤ n ≤ 1.00 (Quegession - Quessured)Includes allowance for ressuresBecause calibrated fars are not used in this method, tached building, but could for used in this method, using alternative method, <br< td=""><td>149.10 - M86149.15 - 96E 779 - 10E 1827 - 11CanadaCanadaUSAUSASingle cone buildingsBuildings with air handling systemsSingle zone buildingsSingle zone buildingsbuildingsWind < 20 km/hr (5.6 m/s) Temperature limit depending on building height$\Delta T x$ Height < 200 m°C</td>Wind < 2 m/s 5°C < T 5 3°C</br<>	149.10 - M86149.15 - 96E 779 - 10E 1827 - 11CanadaCanadaUSAUSASingle cone buildingsBuildings with air handling systemsSingle zone buildingsSingle zone buildingsbuildingsWind < 20 km/hr (5.6 m/s) Temperature limit depending on building height $\Delta T x$ Height < 200 m°C	149.10 - M96149.15 - 96E 779 - 10E 1877 - 119972-2012CanadaCanadaUSAUSAUSAinternationalSmall detached but adaptable for larger buildingsBuildings with air handing systemsSingle zone buildingsSingle zone buildingsSingle zone buildingsWind 4 20 km/hr (56 m/s)Wind $< 20 km/hr (56 m/s)$ Temperature limit depending on building height $\Delta T x$ Height $< 200 m^{\circ}C$ Wind $< 2 m/s$ S'C 5 T 5 35°CWind $< 3 on Beaufort SofteA 3 on Beaufort SofteA 3 on Beaufort SofteA 3 on Beaufort SofteA 3 on Beaufort SofteA 3 on Beaufort SofteA 3 on Beaufort SofteA 3 on Beaufort SofteBefore and After(no duration provided)Before and Afterfor duration provided)Wind < 2 m/sWind < 2 m/sSingle-Point: 50 PaRecommend DP (2 \times 2 m - m - m - m - m - m - m - m - m - m$	140.01- MSG140.35 - SGF 779 - 10F 1827 - 119972.200USACESingle CandedCandedUSAUSAInternationalUSASingle Cance buildingsSingle cone buildingsSingle cone buildingsSingle cone buildingsSingle cone buildingsMind a tisten of a 3 m/sWind < 20 km/hr (5.6 m/s)	1989.01-MBG189.03-961779-1001779-1001972-2012USAUSAUSACanadaCanadaUSAUSAUSAUSAUSAUSAUSAUSASingle trade-buildingssingle cone buildingssingle cone buildingsSingle cone buildingsAll buildingsAon DecellingsWind < 20 km/hr (15 m/h)

or complex buildings.

not pressure equalize.

How to measure?


- Pressurize/depressurize
 - Unlike in houses, *both* are recommended
- Seal / damper intentional holes
 - Beware operational reality vs test
- Limit testing when pressures imposed
 - Stack effect
 - Wind
 - Important issues for large buildings


Pressures During Test

- Wind & Stack
- If too large, can't test

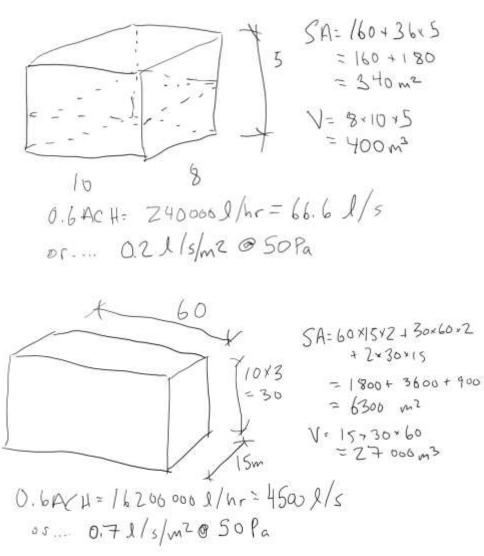
When can one test?

Measurement Reporting

- Common to use ACH@50 for houses
 - This is not a good metric for *enclosures*
- Industry has chosen cfm/sf @ 75 Pa for commercial buildings
 - Accounts for enclosure : floor ratio
 - Which test? Pressurization or Depressurization
- Use of total enclosure area is common
 - Check that the area used includes slab
 - Where is conditioned/unconditioned space?

WATERLO® ilding Science

Reporting Metrics


- ACH @ pressure (usually @50 Pa)
 - Volumetric flow rate / volume
- Permeance (usually @50 or 75 Pa)
 - Volumetric flow rate / area
 - What area?
 - Recommend six sided area
- Higher pressures are both possible and preferable for measurement accuracy

Why ACH is a poor metric

- e.g. a 2 story house vs hi-rise apt. @0.6ACH
- House 0.2 l/s/m²
 vs
- Apartment 0.7 l/s/m²
- Large buildings can easily meet low ACH targets
- But relation to performance?

Targets?

TABLE 4.1WHOLE BUILDING AIRTIGHTNESS PERFORMANCE REQUIREMENTS FOR CANADAAND THE UNITED STATES (RETROTEC, 2012)

Standard	Region	Comments	Requirements		
		Large Buildings	1.27 L/(s·m²) @ 75 Pa		
USACE	USA	Large Buildings (Proposed)	0.76 L/(s·m²) @ 75 Pa		
GSA	USA	All Buildings	2.03 L/(s·m²) @ 75 Pa		
2012 Washington State Energy Code	Washington State	Commercial Buildings	2.03 L/(s·m²) @ 75 Pa		
2012 Seattle Energy Code	Seattle	Commercial Buildings	2.03 L/(s·m²) @ 75 Pa		
IBC/IECC	Model Code	Commercial Buildings in Climate Zone 4 – 8	2.03 L/(s·m²) @ 75 Pa		
IGCC	Model Code	Commercial Buildings	1.27 L/(s·m²) @ 75 Pa		
LEED	USA	All 6 surfaces enclosing an apartment.	1.17 L/(s·m²) @ 75 Pa		
LEED Canada	Canada	All 6 surfaces enclosing an apartment.	1.52 L/(s·m²) @ 75 Pa		
Passive House (Canada	Canada	All buildings	0.6 ACH ₅₀		

Targets, e.g. GSA

- Air impermeability
 - Material: 0.02 lps/m² @75 Pa 0.004 cfm / ft² @0.3"wg
 - Component: 0.2 lps/m² @75 Pa 0.04 cfm / ft² @0.3"wg
 - Building: 2.0 lps/m² @75 Pa 0.4 cfm / ft² @0.3" wg
- <u>Building</u> requirement most important for energy, interior RH, IAQ
- <u>Component</u> requirement may matter for air leakage <u>condensation</u> control, comfort

Practical Issues: A Big Deal

- Occupancy
 – doors opening, bathroom fans operating, HVAC operation?
- Security/Safety- opening doors to connect interior spaces together
- Control & Power. How to control many different blowers How to power same.
- Sealing. Need to access and seal many HVAC vents grilles, etc.

Sealing Openings

Whole-Building Testing

- Test early if you **must** hit a target
- Design enclosure for **testability**
 - Construction sequencing!
- Test before most of air barrier system is covered by other layers
- Do mockups
- Confirm trades are executing early

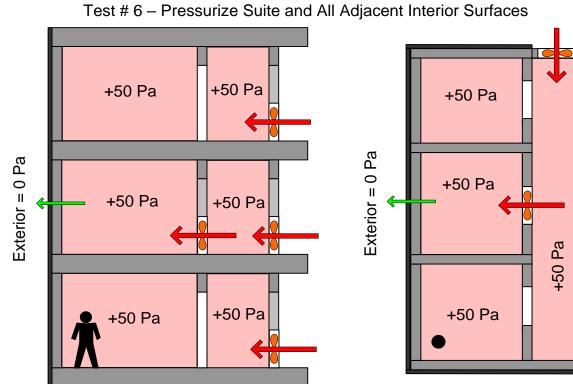
Large Building Air Leakage

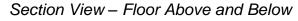
Air Leakage Testing

• Power Supply: 15A-20A per door

HVAC Systems

- Grills, louvers, dampers, vents are all penetrations of the air barrier system
- Become one of the largest sources of leakage in "good" buildings
- Typically these are excluded from targets, but should be measured if you can

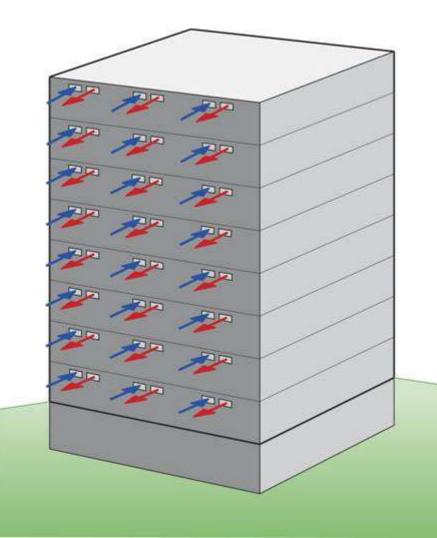




Compartmentalization

- Construction sequencing
- Managing size
- Research

ATERI OO



Plan View – Test Floor

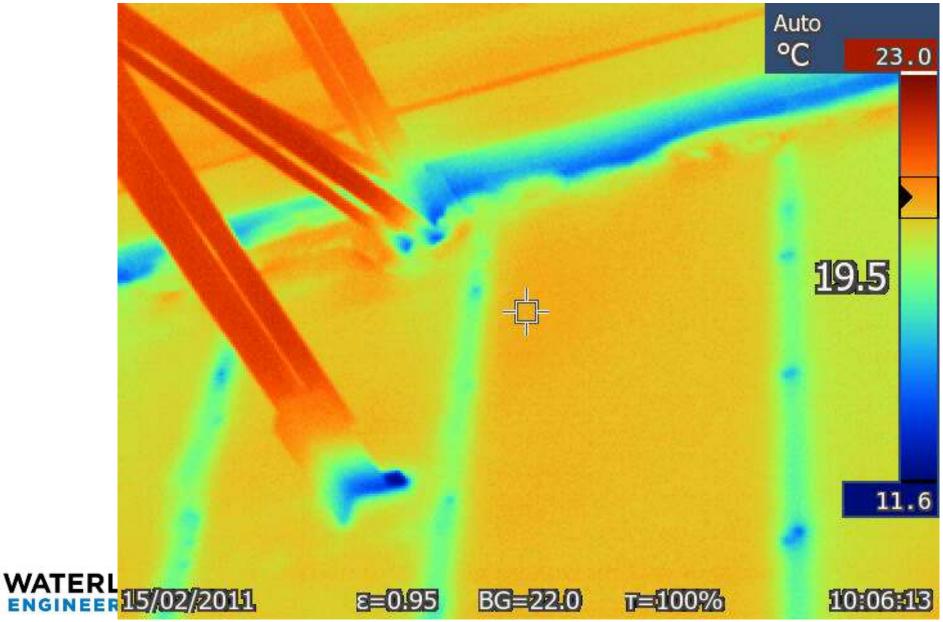
Many suites / many holes

- Significant effort required for multi-unit buildings.....
- Depressure easier

What to do with results?

- First, find the leaks
- Commonsense/experience is helpful
- ASTM E1186 Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems
- IR camera, smoke, hand

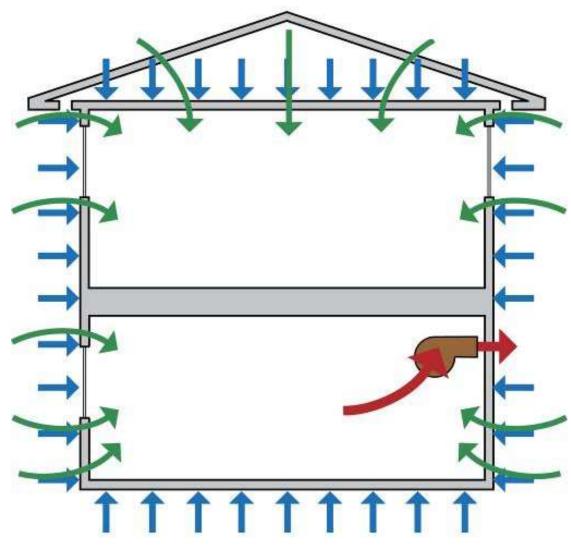
IR Camera


- Requires skilled operator
- Temperature difference
- Flow inward, then outward

Air leak or thermal bridge?

Smoke / visualization

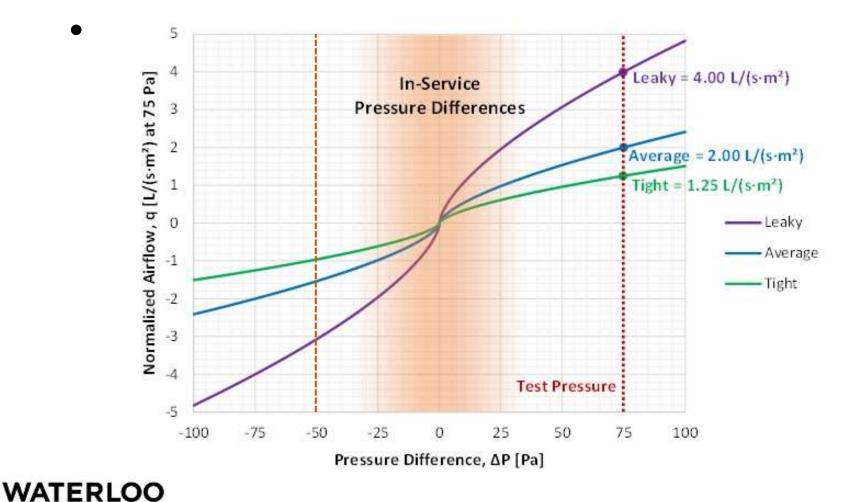
- Especially useful diagnostically
- Demonstration to trades



Blower doors...

- Imposes Uniform Air pressures
- Real life is not uniform

Test results therefore...


- Cannot directly or accurately predict in-service air leakage
- HVAC pressurization can begin to approach leakage of test

Test vs Service pressure

ENGINEERING

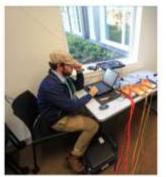
Verification Testing

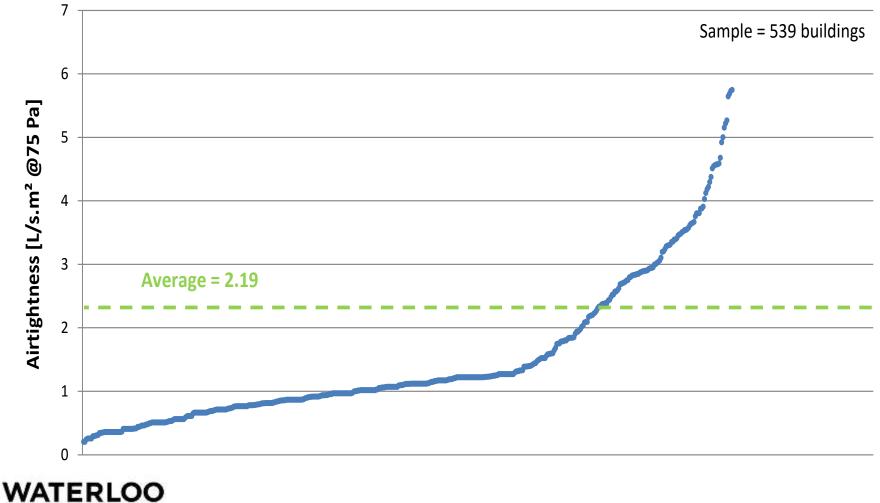
Mockups: Confirm design can be built and perform In-situ testing: Verify that enclosure is built as per design=mockup

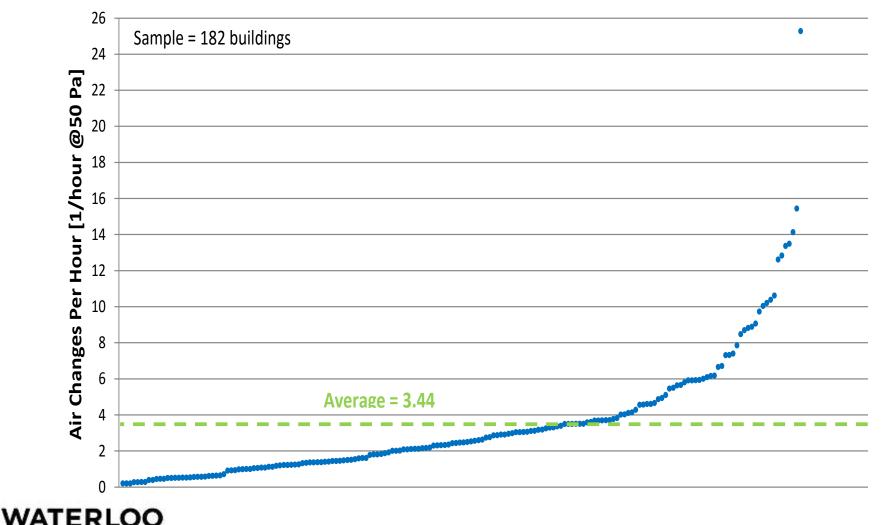
Air Leakage Testing



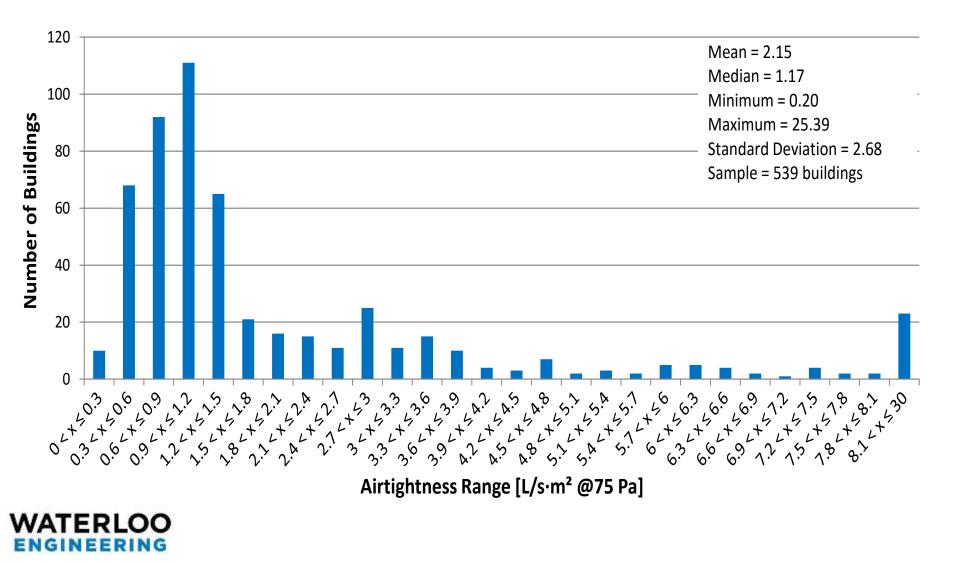
rdh.com

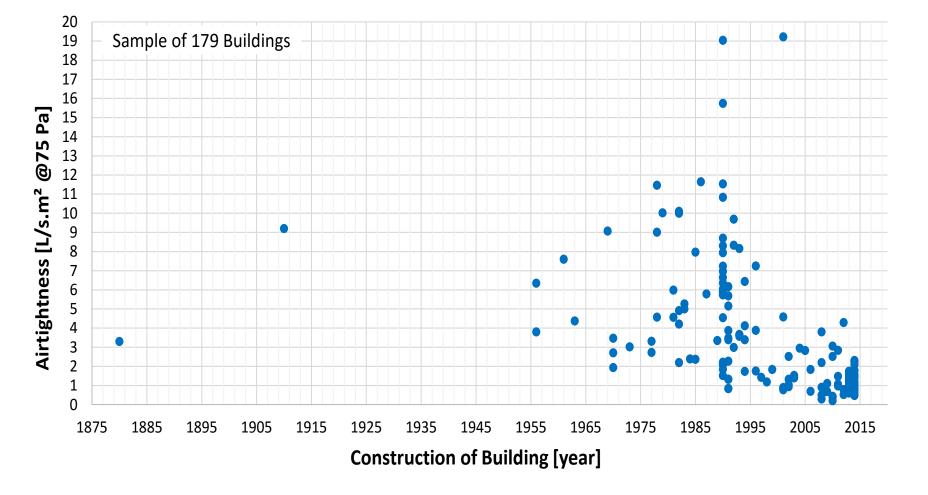

Recent study for the Canadian code development




Air Permeance

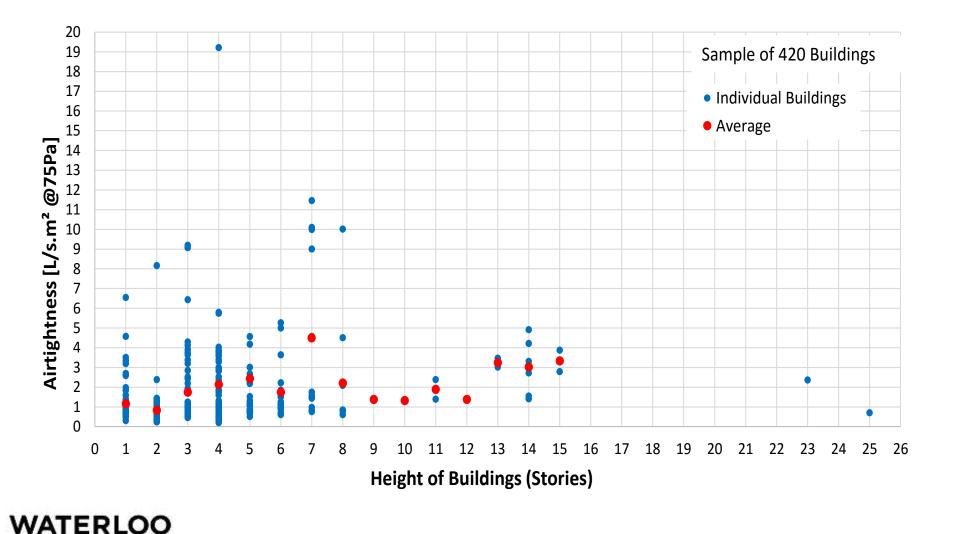
ENGINEERING

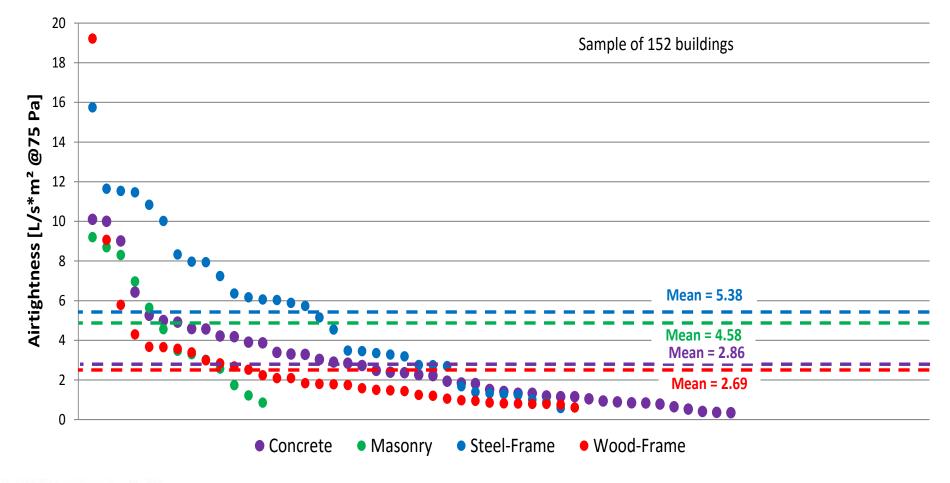

Air Change per Hour


ENGINEERING

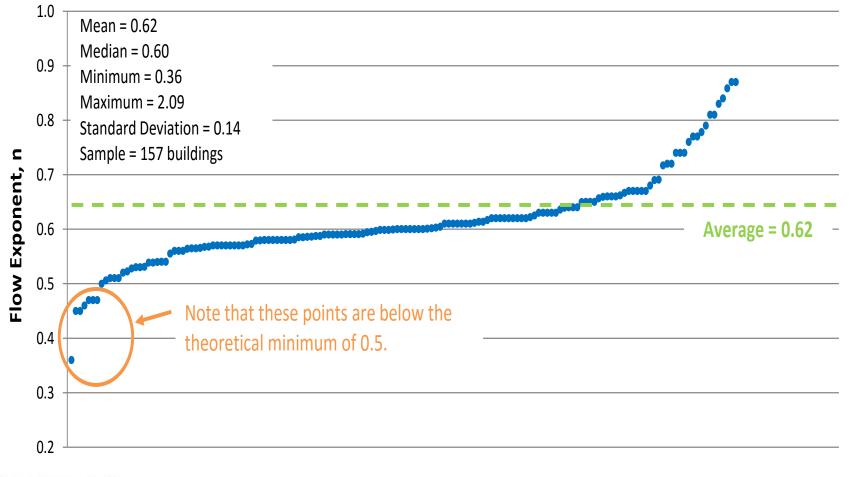
Airtightness distribution

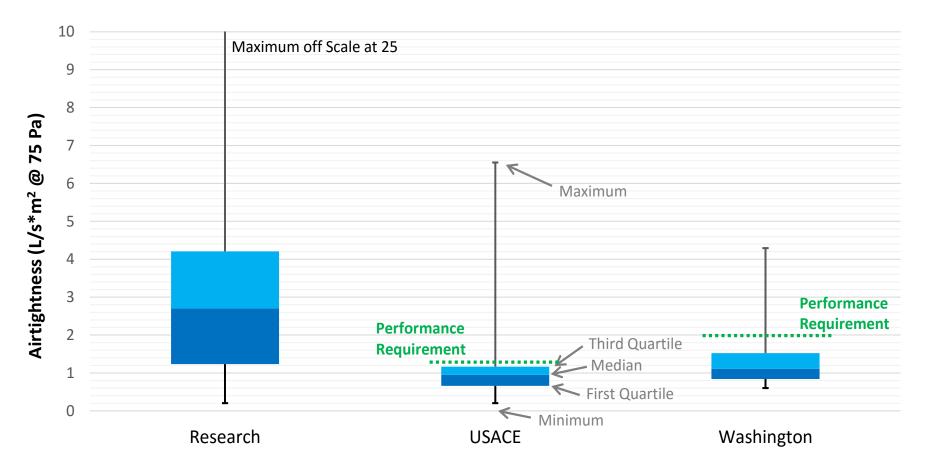
Age




Airtightness vs Height

ENGINEERING


Building "Construction"


Flow Exponent

Influence of requirements

Conclusions

- Many reasons to measure
- Testing large buildings is possible
- But, some potential challenges
 - Wind and stack
 - Many HVAC penetrations
 - Different protocols
- Usually worth it, and will be done more
- Follow ASHRAE / Brennan / Energy Conservatory / USACE protocols

ASHRAE 1478: Measuring Airtightness of Mid- and High-Rise Non-Residential Buildings

Terry Brennan Member ASHRAE

> Gary Nelson Member ASHRAE

Wagdy Anis Member ASHRAE

Collin Olson, PhD

ABSTRACT

ASHRAE 1478 is a research project designed to measure enclosure airtightness of mid- and high-rise buildings in the United States. Data were collected from 16 non-residential buildings in climate zones 2–7 constructed since the year 2000. The dataset includes buildings with no particular attention to making the building airtight, buildings where some attention was given to airtightness, and buildings where extensive attention was paid to airtightness. Some of the buildings were designed to be sustainable (e.g., receiving LEED status). Buildings ranged from four to fourteen stories. A fan pressure testing protocol based on ASTM E779 was developed by the project team. A number of issues in using E779 to test large building were identified, discussed, and addressed. Building airtightness was reported in CFM per square foot of above grade enclosure at a 75 pascal induced shell pressure difference and CFM per square foot of complete enclosure (including slab and below grade conditioned space walls). The results range from 0.06 cfm 75/ft² to 0.75 cfm 75/ft² of complete enclosure (1.10 m³/h/m² to 13.7 m³/h/m²). Major air leakage sites were identified in the course of testing. Air leakage through HVAC related penetrations was measured in a subset of the buildings. Factors that are associated with the most airtight enclosures include air-barrier continuity detailed in construction documents and precast concrete panel construction. Damper air leakage turned out to be a significant portion of the total enclosure air leakage in some of the buildings. The significance of air leakage by HVAC systems is reviewed in relation to building air tightness.

Brennan-Nelson Study

- Avg of all = $0.29 \text{ cfm}75/\text{ft}^2$
- Green Buildings = $0.32 \text{ cfm}75/\text{ft}^2$
 - "other" = $0.22 \text{ cfm}75/\text{ft}^2$
- With air barrier consultant = 0.13
 - cfm75/ft²
 - "other"=0.39

WATERLO® ilding Science

each building. The mean of the averaged test results is 0.29 cfm $75/\text{ft}^2$ with a standard deviation of 0.20 cfm $75/\text{ft}^2$ (5.3 m³/h/m² with a standard deviation of 3.6 m³/h/m²).

The air leakage rate of buildings designated a green building is 0.32 cfm75/ft² (5.8 m³/h/m²). The average leakage rate of all other buildings in the data set is 0.22 cfm 75/ft² (4.2 m³/h/m²).

The air leakage rates for buildings with an air barrier specified and an envelope expert consulted average $0.13 \text{ cfm } 75/\text{ft}^2$ total enclosure ($2.4 \text{ m}^3/\text{h/m}^2$). If buildings with air barriers and air barrier consultants included in the design of the buildings are removed from the data set, the mean of the remaining buildings is $0.39 \text{ cfm} 75/\text{ft}^2$ total enclosure ($7.1 \text{ m}^3/\text{h/m}^2$).

Build- ing ID	Climate	Test Mode	CFM75	95% CI (±%)	CFM75/ft ² above grade encl	CFM75/ft ² total encl	m³/h	m ³ /h/m ² above grade encl	m ³ /h/m ² total encl	ACH50	с	n	r²
1	2B	2-dep	49121	0.6	0.48	0.36	81983	8.7	6.6	1.24	4479	0.56	0.9996
2	5A	1-dep	112195	0.2	0.76	0.57	187253	13.8	10.4	2.01	6501	0.66	1.0000
2	5A	2-Press	121958	6.9	0.82	0.62	203548	15.0	11.3	2.16	6405	0.68	0.9966
2	5A	ave 1-2	117077	3.5	0.79	0.59	195401	14.4	10.8	2.08	6453	0.67	0.9983
3	6A	1-dep	25537	1.4	0.18	0.13	42621	3.2	2.4	0.43	1807	0.61	0.9983
3	6A	2-Press	26893	2.6	0.19	0.14	44884	3.4	2.5	0.46	2346	0.57	0.9878
3	6A	ave 1-2	26215	1.5	0.18	0.14	43753	3.3	2.5	0.45	2076	0.59	0.9980
4	6A	1-dep	33301	2.8	0.19	0.13	55579	3.5	2.3	0.36	3157	0.55	0.9967
4	6A	2-Press	36183	1.6	0.21	0.14	60389	3.8	2.5	0.40	3582	0.54	0.9981
4	6A	ave 1-2	34742	1.6	0.20	0.13	57984	3.7	2.4	0.38	3370	0.54	0.9974
5	4C	1-dep	31286	1.4	0.27	0.21	52216	4.9	3.9	0.61	2151	0.62	0.9980
5	4C	2-Press	33552	1.4	0.29	0.23	55998	5.2	4.2	0.66	2510	0.60	0.9985
5	4C	ave 1-2	32419	1.0	0.28	0.22	54107	5.0	4.0	0.63	2330	0.61	0.9982
6	3A	1-Press	6440	2.1	0.08	0.06	10748	1.5	1.1	0.21	601	0.55	0.9938
6	3A	2-Dep	5889	3.0	0.07	0.05	9829	1.3	1.0	0.19	453	0.59	0.9932
6	3A	ave 1-2	6165	1.8	0.08	0.06	10289	1.4	1.0	0.20	527	0.57	0.9935
7	5A	1-Press	52604	1.0	0.40	0.31	87796	7.3	5.7	0.26	3462	0.63	0.9946
7	5A	2-Dep	51442	3.4	0.39	0.30	85857	7.1	5.5	0.26	3565	0.62	0.9905
7	5A	ave 1-2	52023	1.8	0.39	0.31	86826	7.2	5.6	0.26	3513	0.62	0.9926
8	4A	1-Press	25330	2.7	0.36	0.32	42276	6.6	5.9	1.14	1347	0.68	0.9766
8	4A	2-Dep	21649	1.6	0.31	0.28	36132	5.7	5.0	1.00	1457	0.63	0.9964
8	4A	ave 1-2	23490	1.6	0.34	0.30	39204	6.1	5.5	1.07	1402	0.65	0.9865
9	4A	1-dep	48605	4.2	0.77	0.56	81122	14.0	10.2	1.97	3920	0.58	0.9922
9	4A	2-Press	50384	2.1	0.79	0.58	84091	14.5	10.5	2.03	3968	0.59	0.9920
9	4A	ave 1-2	49495	2.3	0.78	0.57	82606	14.3	10.4	2.00	3944	0.59	0.9921
10	6A	1-dep	9840	1.6	0.12	0.09	16423	2.2	1.6	0.24	692	0.62	0.9978
10	6A	2- Press	11609	1.5	0.14	0.11	19375	2.5	1.9	0.28	699	0.65	0.9979
10	6A	ave 1-2	10725	1.1	0.13	0.10	17899	2.3	1.8	0.27	696	0.63	0.9979
11	4A	1-dep	53350	1.3	0.53	0.42	89041	9.7	7.7	1.34	4653	0.57	0.9967
11	4A	2-Press	55729	1.4	0.55	0.44	93012	10.1	8.0	1.38	4237	0.60	0.9960

Building

USACE 2012

The!test!consists!of!measuring!the!flow!rates!required!to!establish!a!minimum!of!ten!(10)!positive! and! ten! (10)! negative! approximately! equally! spaced! induced! envelope! pressures.! Induced! envelope!pressure!test!points(shall!be(averaged!over!at!least!10seconds!and!shall!be!no!lower! Than 40 Pa for a twoGsided!(positive!and!negative)!test!and!50!Pa!for!a!single!sided!test.!The! highest!point!must!be!at!least!75!Pa,!and!there!must!be!at!least!25!Pa!difference!between!the! lowest!and!highest!point.!Pressures!in!the!extremities!of!the!envelope!must!not!differ!from!one! another!by!more!than!10%!of!the!average!induced!envelope!pressure.!Twelve!pre!and!twelve! postGbaseline(pressure!points!must!be!taken!across!the!envelope!with!respect!to!the!outdoors! where!each!point!is!an!average!taken!over!at!least!10!seconds.!The!maximum!absolute!baseline(pressure!point!value!must!not!exceed!30%!of!the!minimum!induced(envelope(pressure(test(point! used!in!the!analysis.!There!are!no!further!restrictions!on!wind!speed!or!temperature!during!the! test.

The following requirements pertain to masking HVAC openings!other!than!flues:!!

a. The!test!is!conducted!with!ventilation!fans!and!exhaust!fans!turned!off and the outdoor air inlets and exhaust outlets sealed (by!dampers!and/or!masking)

b.

Motorized!dampers!must!be!closed!and!may!be!tested!masked!or!unmasked

- c. Undampered!HVAC!openings!must!be!masked!during!testing,!and!
- d. Gravity!dampers!shall!be!prevented!from!moving!or!can!be!masked

