BE16 : REVITALIZING MASONRY MULTIFAMILY

WEINBERG COMMONS

ZA+D, LLC BRUCE ZAVOS, AIA MATT FINE, CPHC®, LEED AP®

• SENIOR PROJECT MANAGER

PASSIVE TO POSITIVE

MICHAEL HINDLE, CPHC®, CPHB®, HERS

PRESIDENT, BOARD OF MANAGERS
 PASSIVE HOUSE ALLIANCE – UNITED STATES

HAMEL BUILDERS PHIL GIBBS, PRESIDENT TERESA HAMM, CPHC®, CPHB®, HERS

PROJECT MANAGER

THC, AFFORDABLE HOUSING PHIL HECHT, CEO BLAISE RASTELLO

DIRECTOR OF AFFORDABLE HOUSING

Passive to **POSITIVE**

ART CREDIT: A FRIEND IN NEED - C.M.COOLIDGE

SITE LOCATION

CLIMATE

SOURCE: TBOAKE.COM

PROJECT BACKGROUND

CHALLENGE: POOR SPATIAL QUALITY & CONSTRAINT

PROJECT BACKGROUND

- (3) BLDGS. / 36 (2) BR UNITS
- 675 NRSF EA.
- PARTIAL BASEMENT / CRAWL SPACE
- (3) STORIES

WASTEFUL, INAPPROPRIATE, AND OUT-DATED SYSTEMS

PROJECT BACKGROUND

LOW-TECH, UN-INSULATED BUILDING ENCLOSURE

UNHEALTHY INTERIOR ENVIRONMENT

EXISTING CONDITIONS

PRE-RETROFIT NO MANAGEMENT OF CONDENSATION PLANE TEMPERATURES –

MOLD GROWTH ASSURED!!

COMMON OCCUPANT HEALTH PROBLEMS

PRIMARY CONTRIBUTORS TO OCCUPANT HEALTH ISSUES

MOISTURE IN ALL FORMS

- BULK WATER
- MOISTURE CARRIED THROUGH
 INFILTRATION/EXFILTRATION
- MOISTURE CARRIED THROUGH
 DIFFUSION
- INTERNAL MOISTURE LOADS

MOLD GROWTH – ASTHMA, ALLERGIES, AND OTHER AILMENTS

AN ORDINARY RENOVATION?

REPAIR-UPGRADE FINISHES, MINIMAL IF ANY INSULATION

NO MANAGEMENT OF CONDENSATION PLANE TEMPERATURES –

MOLD GROWTH STILL ASSURED!!

UNINSULATED MASONRY?

COMFORT FACTORS? Air temp RH Air velocity Mean radiant surface temps

ENTER: THE PH MASONRY RETROFIT

H

ELIMINATE LOSS: (almost!)

CONTINUOUS INSULATION DEFINING THE THERMAL ENVELOPE

SUPER-INSULATED AND VAPOR OPEN

1 -

PRE "VE" ENCLOSURE

- EXIST. PLASTER OVER GYP. BD. SUBSTRATE & VERT. 1X FURRING
- • BRICK & CMU BACK-UP
- -• 9 ½" WD. 'I'-JOISTS @ 24" O.C., MECH. ATTACH. @ 36" O.C., STAGGERED
- FLUID-APPLIED AIR AND WATER RESISTIVE BARRIER
- 8" MINERAL WOOL INSULATION @ 6 LB./CU. FT. DENSITY
- • HORIZ. 5/4 WD. FURRING @ 18" O.C., STAGGERED
- 5/8" FIBER CEMENT CLADDING ON PROPRIETARY CLIPS

ENVELOPE DESIGN + OCCUPANT HEALTH

RETROFIT-MANAGE CONDENSATION PLANE TEMPERATURES –

THIS WALL WILL NOT GROW MOLD

The entire masonry structure is above the dew-point of interior air. Layers outside masonry wall are vapor open.

VAPOR OPEN ASSEMBLIES DRY TO BOTH SIDES

MANAGEMENT OF FIRST CONDENSATION PLANE TEMPERATURES

VAPOR OPEN ASSEMBLIES FOR HEALTH, SAFETY, AND DURABILITY

ENVELOPE + OCCUPANT COMFORT

COMFORT FACTORS? Air temp RH Air velocity Mean radiant surface temps

ORIENTATION: PRE-DETERMINED SITING

ORIENTATION AND SOLAR GAIN OPTIMIZING COMFORT

SOLAR GAIN CONTROL & QUALITY OF SPACE

TYPICAL APARTMENT UNIT FLOOR PLAN

672 NET RENTABLE SQ. FT.

HEATING AND COOLING

ASYMETRICAL LOADS + DISTRIBUTION

SOLUTION: FIXED SOLAR SHADING

SOLAR GAIN WHEN YOU WANT IT (AND NOT WHEN YOU DON'T!!)

december

12/22/2013

december

February / October

Solar radiation [Btu/hr ft²]

0

2 4 6 8 10 12 14 16 18 20 22

0

Time [h]

24

February / October

Solar Gain / Heating February

Solar Gain / Cooling June

April / August

Solar Gain / Hourly - April / August

VRF WITH HEAT EXCHANGE: EFFECTIVE LOW LOAD OPERATION,

HEATING AND COOLING DESIGN

HEATING AND COOLING DESIGN VRF WITH HEAT EXCHANGE: DUCTED DISTRIBUTION

HVAC DESIGN ERV COMMON VENTILATION & DISTRIBUTION BY QUADRANT

CASE STUDY: FROM THEORY TO REALITY

THE HIGH-PERFORMANCE ENCLOSURE

CHALLENGE: ROOF DETAILS

CHALLENGE: ROOF TREATMENT

SOLUTION: LOW-TECH FRAMING & TAPING

SOLUTION: KEEP IT SIMPLE – TAPE AND SHEATHING

CHALLENGE: BASEMENT TREATMENT

SOLUTION: INCLUDE IN VOLUME

SOLUTION: UTILIZE HARDY CONTROL LAYERS

CHALLENGE: CRAWLSPACE TREATMENT

SOLUTION: MINIMIZE RISK

SOLUTION: BREAK ONE OF OUR RULES

CHALLENGE: FOUNDATION TREATMENT

FOUNDATION SOLUTION: OPTIMIZE AND CAPITALIZE

Passive House verification	_	view įivormai		· · · · ·	1441
PASSIVEHOUSE REQUIREMENTS					
Certificate criteria:	Default Standard				
Heating demand					
specific:	3.26 kBtu/ft²yr		-		
target: total:	4.75 kBtu/ft²yr 30532.29 kBtu/yr	0 1 2	3 4 5 6	7 8 9	
Cooling demand	30332.23 KDI0/yi				
specific:	2.36 kBtu/ft²γr				
target:	5.71 kBtu/ft²yr		3 4 5 6	7 8 9	\checkmark
total:	22162.79 kBtu/yr				
latent:	1.56 kBtu/ft²yr				
Heating load					
specific:	3.13 Btu/hr ft ²				
target:	3.17 Btu/hr ft ²	0 1	2 3 4	5 6	
total:	29361.36 Btu/hr				
Cooling load					
specific:	2.11 Btu/hr ft ²				
target:	3.17 Btu/hr ft ²		2 3 4	5 6	
total:	19777.82 Btu/hr				
Primary energy					
specific:	34.81 kBtu/ft²yr				
target:	38.04 kBtu/ft²yr	0 10 2	0 30 40	50 60 70	
total:	326471.92 kBtu/yr				
Site energy					
total:	12.96 kBtu/ft²yr				
building systems:	68.38 kBtu/yr	0 2.5	5 7.5 10	12.5 15	
photovoltaic savings:	0 kBtu/ft²yr				
Air tightness					
ACH50:	0.54 1/hr				
target:	0.6 1/hr	0 0.2	0.4 0.6 0.8	1 1.2	
CFM50 per envelope area:	0.04 cfm/ft ²				
target:	0.05 cfm/ft²				

ENERGY SIMULATION RESULTS: WELL WITHIN CRITERIA

-

CASE STUDY: CONSTRUCTION PROCESS

PRE-CONSTRUCTION MODEL/PROCESS

"Hey, could you give us some cost feedback on assemblies options?"

"Get all your "A-Team" subs in here and we will explain it all before they price it."

"THAT MINERAL WOOL AND PROSOCO ARE UN-GODLY EXPENSIVE – YOU GOTTA GET THAT OUTTA THERE"

"Why is this an add? I thought you said the mineral wool and Prosoco were ungodly expensive" ESTIMATING – HOW DO YOU PRICE SOMETHING NONE OF "YOUR GUYS" EVER HEARD OF??

"PUT IN IN THE DRAWINGS AND I'LL PRICE IT"

"WE'RE GONNA PUT THIS OUT ON THE STREET."

"Well it is not as robust, but if you are sure it will save us real money we can go with . . . "

"MY GUYS HAVE NEVER DONE THIS- THEY WAY UNDER-BID IT"

SUBCONTRACTOR BUY-IN

LESS ROBUST AND HARDER TO BUILD

POST "VE" ENCLOSURE

- • EXIST. PLASTER OVER GYP. BD. SUBSTRATE & VERT. 1X FURRING
- • BRICK & CMU BACK-UP
- -• 9 ½" WD. 'I'-JOISTS @ 24" O.C., MECH. ATTACH. @ 36" O.C., STAGGERED
- -• 2.2 LBS./CU. FT. DENSITY SPRAY-APPLIED FIBERGLASS
- REINF. WRB SERVES AS AIR-TIGHT LAYER
- VERT. 2 3/8" W. AIR SEALING TAPE
- • HORIZ. 5/4 WD. FURRING @ 18" O.C., STAGGERED
- 5/8" FIBER CEMENT CLADDING ON PROPRIETARY CLIPS

COORDINATION INTENSITY

SUBSTITUTION REQUESTS

INSTALLATION AND CONTRACTOR CONTINUITY

INSTALLATION QUALITY

TEMPORARY MATERIAL PROTECTION AND SEQUENCE

LACK OF SUBCONTRACTOR CONTROL

LACK OF SUBCONTRACTOR CONTROL

LACK OF SUBCONTRACTOR CONTROL

TELL THEM...

MUST BE ACCOMPLISHED. THE GENERAL CONTRACTOR, AIR-SEALING WAPOR CONTROL SYSTEMS CONTRACTOR(S), ARCHITECT, BUILDING SCIENCE CONSULTANT, AND THE OWNER'S REPRESENTATIVE MUST BE IN ATTENDANCE.

MEETING MUST BE ACCOMPLISHED. THE GENERAL CONTRACTOR, WINDOW AND DOOR CONTRACTOR(5), AIR-SEALING CONTRACTOR(5), ARCHITECT, BUILDING SCIENCE CONSULTANT, AND THE OWNER/OWNER'S REPRESENTATIVE MUST BE IN

THE AIR-TIGHT LAYER INDICATED THROUGHOUT THE SET OF CONTRACT DOCUMENTS IS REPRESENTED BY A THICK. RED. DASHED LINE. GENERALLY, FOR THE SUPERSTRUCTURE, THIS LAYER IS TO BE AT THE EXTERIOR FACE OF EXISTING. BULDING SHELL (MASONRY), THIS LAYER ALSO PERFORMS AS THE SECONDARY DRAINAGE PLANE TO THE ASSEMBLY. APPLICATION SPECIFICATIONS OF THE AIR AND MOISTURE BARRIER MUST BE STRICTLY ADHERED. REFER TO A-SPEC. SERIES SHTS, THIS SET. FOR THE ROOF, THE EXTERIOR SIDE (TOP) OF ROOF SHEATHING IS THE AIR-TIGHT LAYER, REFER.

GENERALLY FOR SUB-GRADE CONDITIONS THE AIR-TIGHT LAYER IS TO BE ON THE INTERIOR FACE OF EXISTING BUILDING SHELL AND THE TOP SIDE OF EXISTING BASEMENT/CRAVUSPACE FLOORS. REFER TO APPLICABLE DETAILS FOR

AND ARE SUBJECT TO FELD INSPECTION BY THE ARCHITECT. AND BUILDING SCIENCE CONSULTANT AT ANY TIME AND PRIOR TO COVERING OVER. SCHEDULING OF ALL COVERING INSTALLATIONS MUST BE GIVEN TO INSPECTING ENTITES WITH 24

A QUALIFYING AIR-TIGHTNESS TEST MUST BE ACHEVED AFTER THE INSTALLATION OF ALL WINDOWS AND DOORS AND AFTER APPLICATION OF THE FLUID-APPLIED AR AND MOSTURE BARRIER, AND PRIOR TO THE APPLICATION OF ALL COINCIDE WITH AIR SEALING OF THE ROOF SHEATHING. PRIOR TO INSTALLATION OF ROOF INSULATION AND THE BALANCE

THE ROOF SHEATHING AND AIR SEALING JUNCTIONS (TAPED JOINTS, PARAPET AND EAVE CONNECTIONS, ETC.), MUST BE TEMPORARILY PROTECTED FROM CLIMATIC TEMPERATURE EXTREMES MEATHER MATER AND MOISTURE UNTIL

A QUALIFYING AIR-TIGHTNESS TEST MUST BE ACHIEVED AFTER THE COMPLETE INSTALLATION OF THE VAPOR AND AR BARRIER LAYER (INCLUDING PERIMETER TERMINATIONS SEAM CONNECTIONS AND MATERIAL TRANSITIONS ETC.) IN

AN ADDITIONAL QUALIFYING AIR-TIGHTNESS TEST MUST BE ACHIEVED AFTER THE APPLICATION OF THE VERTICAL 1-JOIST SYSTEM PROPOSED TO HOLD THE EXTERIOR INSULATION PANELS AND CLADDING SYSTEM, AND PRIOR TO THE

PRIOR TO THE INSTALLATION OF THE VAPOR AND AIR BARRIER LAYER AND INSULATION IN THE CRANLSPACES, ALL

TOLD THEM...

...TELL THEM AGAIN.

FIELD CONDITION CHALLENGES

FIELD CONDITION CHALLENGES

CHALLENGES MOLD... WITH BUILDING

INHERENT CHALLENGES, BULK WATER, CAPILLARY ACTION

CHALLENGES WITH BUILDING

...CAPILLARY...

CHALLENGES ...AND HYDROSTATIC WITH BUILDING MOISTURE...

CHALLENGES ...AND HYDROSTATIC WITH BUILDING MOISTURE...

CHALLENGES WITH BUILDING ...AND BULK WATER.

INTERIOR ENVIRONMENT: QUALITY OF NATURAL LIGHT

INTERIOR ENVIRONMENT: QUALITY OF NATURAL LIGHT

INTERIOR ENVIRONMENT: AVOID "TUNNEL VISION"

...AND OPTIMIZED SOLAR GAIN.

AIR-TIGHTNESS: NOW TO THE EXTERIOR

ALL STRIPPED DOWN

CREATING THE INSULATION CAVITY

CREATING THE INSULATION CAVITY

CREATING THE INSULATION CAVITY

THE AIR-TIGHT LAYER SEQUENCE

DETAILS AS A RESULT OF "VALUE-ENGINEERING"

CRAWLSPACE INSULATION AND VAPOR CONTROL SEQUENCE

CRAWLSPACE INSULATION AND VAPOR CONTROL SEQUENCE

CRAWLSPACE INSULATION AND VAPOR CONTROL SEQUENCE

CRAWLSPACE INSULATION AND VAPOR CONTROL SEQUENCE

THE ROOF RETROFIT: AN AIR SEALING AND SEQUENCING CHALLENGE

THE ROOF RETROFIT: AN AIR SEALING AND SEQUENCING CHALLENGE

THE ROOF RETROFIT: AN AIR SEALING AND SEQUENCING CHALLENGE

CONSTRUCTION CHALLENGES

AHH.... ASSIMILATION

