Taming the 900-Pound Gorilla

NESEA Building Energy Boston, MA

March 9, 2016

Bill Maclay, Principal, Maclay Architects Megan Nedzinski, Senior Project Manager, Maclay Architects Andy Shapiro, Principal, Energy Balance

Using Integrated Design to Create a Net-Zero Dining Hall

> MaclayArchitects CHOICES IN SUSTAINABILITY

PROCTOR Dining Commons

- 16,000 sf dining hall and commercial kitchen
- 350 seats
- Experiential Servery/Food Forest Layout

- Site Responsive Design
- Campus Social Center
- Net Zero Ready

GETTING TO NET ZERO

Select an experienced team
Use integrated design & delivery
Set clear goals, metrics, EUI
Commit, COLLECTIVELY, to metrics

ACHIEVING NET ZERO READY?

- Reduce envelope loads
- Reduce kitchen loads
- Efficient Mechanical Systems

Reduce envelope loads

Floor/Slab Assembly R-value: Wall Assembly R-Value:

Roof Assembly R-Value:

Windows:

Envelope Infiltration Rate:

R-27 to R-18 (6"-4" EPS) R-38 (5.5" cellulose w/ 4" polyiso) R-54 (13" HFO Two part PU Spray) Triple-glazed, Argon Paradigm U-0.23, R-4.35 0.1 CFM50 / sq. ft.

- Modeled Options
 - Building Envelope
 - Hoods

Code Complaint building with fixed speed hood
 Net Zero Ready building with variable speed hood
 Net Zero Ready building with variable speed hood with heat recovery

- Schematic Phase modeling for system selection
- Code Complaint building with fixed speed hood
- Net Zero Ready building with variable speed hood
- Net Zero Ready building with variable speed hood with heat recovery

Efficient Mechanical Systems

- HVAC OPTION 1: CODE
 - Propane Fired
 Conventional Water
 Source Heat Pump
 System

CONSULTING

• Efficient Mechanical Systems

- HVAC OPTION 2: NET ZERO
 - Ground Source Heat Pump System

• Efficient Mechanical Systems

- HVAC OPTION 1: ALL RENEWABLE, INCLUDES COMBUSTION
 - Air Source Heat Pump System for Building Conditioning

CONSULTING

- Wood Pellet Boiler for Hot Water and Make-up Air

Reduce process loads (kitchen)

Energy Modeling and Optimizing SystemsWhat are the Loads?

Schools Y	ear Sched	lule	
222	days kitchen serves during year		
# meals/d	ay		
200	breakfast		
375	lunch		
260	dinner		
835	total		
Summer S	Schedule		
75	days		
# meals/d	ay		
75	breakfast		
75	lunch		
75	dinner		
225	total		

Energy Modeling and Optimizing SystemsQuestion #1: What are the Loads?

Energy Modeling and Optimizing Systems Biggest Slice: <u>Hood Makeup Air</u>

- Client Commitments and Goals
 - Healthy Food Fresh Local Ingredients
 - Continued "From Scratch" Cooking and Baking
 - No Menu Sacrifices
 - Sustainability

"Sustainability is not so much a technical problem, but more so a people problem."

- Reduce Hood Make-up Air
 - Objective #1 Minimize hood lengths
- Client Commitments and Goals
 - Healthy Food Fresh Local Ingredients
 - Continued from Scratch Cooking and Baking
 - No Menu Sacrifices
 - Sustainability

MORE COMPACT = LAYOUT

Less SF/Less building

- 100 SF /smaller kitchen
- 17 fewer LF of hood
- Significant Building
 Cost Savings

Additional Cost for Equipment (\$50,000)

 1st Year Energy Savings (\$40,000)

- Reduce Hood Make-up Air
 - Objective #1 Minimize hood lengths
 - Objective #2 Minimize number of hoods
- Client Commitments and Goals
 - "Food Forest"
 - Face to Face/Personal Staff and Student
 Connection

PROCTORFOODMULTIPLELive to Learrin to Live.FORESTHOODS

- Reduce Hood Make-up Air
 - Objective #1 Minimize hood lengths
 - Objective #2 Minimize number of hoods
 - Objective #3 Maximize Hood Efficiencies
- Client Commitments and Goals
 - Energy (Net Zero)
 - Cost

PROCT®R

ISLAND VS. WALL VS. MOUNT

Energy Modeling and Optimizing Systems Kitchen Hood – <u>6,000+ cfm</u>

Base Case: On/off control, no heat recovery

Peak Load,

- ~500kBtu/hr
- (150kw) heating

Annual Load:

- ~980 MMBtu/yr
- (286 MWh/yr)

Energy Modeling and Optimizing Systems Kitchen Hood – <u>6,000+ cfm</u>

Demand control,

no heat recovery

Peak Load,

- ~500kBtu/hr
- (150kw) heating

Annual Load:

- ~550 MMBtu/yr
- (159 MWh/yr)

Proctor Dining Hall Variable Speed kitchen hood ventilation schedule

Energy Modeling and Optimizing Systems Kitchen Hood – <u>6,000+ cfm</u>

Peak Load, **Demand** control, WITH heat recovery

- ~250 **k**Btu/hr
- (150kw) heating

Annual Load:

- ~270 MMBtu/yr
- (80 MWh/yr)

Proctor Dining Hall Variable Speed kitchen hood ventilation schedule

Kitchen Hood Exhaust and Make-Up Air

- Exhaust: 6,871 CFM
 - Lot of effort to reduce cfm
 - 5 hoods variable volume
 - Damper closes when not in use
- Make-up: 6,185 CFM
 - ~50% heat recovery (Halton)
 - Some excess exhaust reduces dining ERV

Exhaust Air

Makeup Air

Energy Modeling and Optimizing Systems 2nd Biggest Slice: Kitchen Equipment

Peak Load:~100 kW (rough)

Annual Load: ~150,000 kWh/yr Proctor Dining Commons -- Code Building Loads

- Client Commitments and Goals
 - Healthy Food Fresh Local Ingredients
 - Continued "From Scratch" Cooking and Baking
 - No Menu Sacrifices
 - Net Zero
- Kitchen Equipment
 - Objective #1 All Electric (+ Highly Efficient)
 - Objective #2 Meet/Address staff needs and concerns

- Kitchen Equipment
 - New Technology

Justin Silverthorn Advanced Foodservice Solutions, Inc.

- Kitchen Equipment
 - New Technology

Occasional Use only

• Kitchen Equipment

	Kitchen Energy Use Estimate				
	Kitchen Loads		41	Cooking hold	Kitchen
			43	Countertop induction range	Kitchen
			45	Dbl stack elecc convection oven, L2	Kitchen
Item			45	Dbl stack elecc convection oven, L1	Kitchen
Number	Description	Location	50	TILTING KETTLE	Kitchen
3	beverage cooler	Servery	51	60" GRIDDLE	Kitchen
4	UC reach-in cooler	Servery	53	COMBIOVEN with stand, 48"	Kitchen
6	Milk cooler	Servery	65	60 quart floor mixer	Kitchen
8	Ice cream freezer	Servery	65	Mixer 20qt.	Kitchen
10	Waffle iron	Servery	66	Holding Cabinet	Kitchen
12	5-comp drop in hot well	Servery	75	Ice Machine	Kitchen
13	5-comp drop in hot well LED and heat		76	Walk-In Cooler 35F	Kitchen
	lamp	Servery	80	Evaporator Coil fans - walk-in 35F	Kitchen
14	2-comp drop in refrig well	Servery	81	Walk-in cooler compressor 35F	Kitchen
16	48" UC refrigerator	Servery	84	Walk-In Freezer	Kitchen
17	Toaster	Servery	85	Evaporator Coil - Walk-in Freezer	Kitchen
18	2-comp drop in hot well	Servery	85	Walk-In Cooler/Freezer Door	
19	Panini press	Servery		Heaters/Controller	Kitchen
21	6-comp drop in refrig well	Servery	86	Remote compressor, walk-in freezer, -10F	Kitchen
25	mobile induction cooktop	Servery	100	waste disposer w/controls	Kitchen
26	Drop in heated shelf	Servery	103	High Temp. Dish Machine w/ Energy Recovery	Kitchen
28	4-comp drop in hot well	Servery	103	High Temp. Dish Machine boosters	Kitchen
30	Pizza refrigerated prep table	Servery	110		Kitchen
31	Gas fired stone hearth oven	Servery		pulper system Food Processor	
					Kitchen

	Kitchen Energy Use Estimate				1
	Kitchen Loads		41	Cooking hold	Kitchen
			43	Countertop induction range	Kitchen
			45	Dbl stack elecc convection oven, L2	Kitchen
ltem			45	Dbl stack elecc convection oven, L1	Kitchen
Number	Description	Location	50	TILTING KETTLE	Kitchen
3	beverage cooler	Servery	51	60" GRIDDLE	Kitchen
4	UC reach-in cooler	Servery	53	COMBIOVEN with stand, 48"	Kitchen
6	Milk cooler	Servery	65	60 quart floor mixer	Kitchen
8	Ice cream freezer	Servery	65	Mixer 20qt.	Kitchen
10	Waffle iron	Servery	66	Holding Cabinet	Kitchen
12	5-comp drop in hot well	Servery	75	Ice Machine	Kitchen
13	5-comp drop in hot well LED and heat		76	Walk-In Cooler 35F	Kitchen
	lamp	Servery	80	Evaporator Coil fans - walk-in 35F	Kitchen
14	2-comp drop in refrig well	Servery	81	Walk-in cooler compressor 35F	Kitchen
16	48" UC refrigerator	Servery	84	Walk-In Freezer	Kitchen
17	Toaster	Servery	85	Evaporator Coil - Walk-in Freezer	Kitchen
18	2-comp drop in hot well	Servery	85	Walk-In Cooler/Freezer Door	
19	Panini press	Servery		Heaters/Controller	Kitchen
21	6-comp drop in refrig well	Servery	86	Remote compressor, walk-in freezer, -10F	Kitchen
25	mobile induction cooktop	Servery	100	waste disposer w/controls	Kitchen
26	Drop in heated shelf	Servery	103	High Temp. Dish Machine w/ Energy	Kitchen
28	4-comp drop in hot well	Servery	103	Recovery High Temp. Dish Machine boosters	Kitchen
30	Pizza refrigerated prep table	Servery	103	v ,	
31	Gas fired stone hearth oven	Servery	110	pulper system	Kitchen
		· ·		Food Processor	Kitchen

	Kitchen Energy Use Estimate				
	Kitchen Loads		41	Cooking hold	Kitchen
			43	Countertop induction range	Kitchen
			45	Dbl stack elecc convection oven, L2	Kitchen
Item			45	Dbl stack elecc convection oven, L1	Kitchen
Number	Description	Location	50	TILTING KETTLE	Kitchen
3	beverage cooler	Servery	51	60" GRIDDLE	Kitchen
4	UC reach-in cooler	Servery	53	COMBIOVEN with stand, 48"	Kitchen
6	Milk cooler	Servery	65	60 quart floor mixer	Kitchen
8	Ice cream freezer	Servery	65	Mixer 20qt.	Kitchen
10	Waffle iron	Servery	66	Holding Cabinet	Kitchen
12	5-comp drop in hot well	Servery	75	ice Machine	Kitchen
13	5-comp drop in hot well LED and heat		76	Walk-In Cooler 35F	Kitchen
	lamp	Servery	80	Evaporator Coil fans - walk-in 35F	Kitchen
14	2-comp drop in refrig well	Servery	81	Walk-in cooler compressor 35F	Kitchen
16	48" UC refrigerator	Servery	84	Waik-in Freezer	Kitchen
17	Toaster	Servery	85	Evaporator Coil - Walk-in Freezer	Kitchen
18	2-comp drop in hot well	Servery	85	Walk-In Cooler/Freezer Door	
19	Panini press	Servery		Heaters/Controller	Kitchen
21	6-comp drop in refrig well	Servery	86	Remote compressor, walk-in freezer, -10F	Kitchen
25	mobile induction cooktop	Servery	100	waste disposer w/controls	Kitchen
26	Drop in heated shelf	Servery	103	High Temp. Dish Machine w/ Energy	Kitchen
28	4-comp drop in hot well	Servery	103	Recovery High Temp. Dish Machine boosters	Kitchen
30	Pizza refrigerated prep table	Servery	110	5	
31	Gas fired stone hearth oven	Servery	110	pulper system Food Processor	Kitchen
					Kitchen

Approaches:

- Energy Star Equipment
- Recover heat from compressors or FreeAire for medium temp walk-in
- Estimated 10% energy reduction (15MWh) -- out of 150MWh
- Little peak load reduction

Energy Modeling and Optimizing Systems Wild Card – Gas Pizza Oven

Approaches:

- Burn wood?
- Offset with more PV?
- Make methane?
- Student boycott of gas-fired pizza?

Gas Fired Pizza Oven					
Hrs/ day	Hours/ year	Avg%full load	MMBtu/ vr	Total Btu/hr	gal/yr. propane
4	1,038	0.25	91	350,000	993

Energy Modeling and Optimizing Systems 3rd Biggest Slices: Space Heat

Code building energy

 369 MMBtu/yr (110 MWh/yr)

Energy Modeling and Optimizing Systems 3rd Biggest Slice: Space Heat

NZR building energy

 36 MMBtu/yr (14 MWh/yr)

Approaches: Super-insulate

- 0.1 cfm50/sq.ft. shell
- R-5 windows
- R-20 slab
- R-40 walls
- R-60 roof
- GSHP with heat recovering water source heat pump loop

Ground Source Heat Pump System

Recovers heat

- Space cooling to hot water
- Cooling kitchen while heating space
- AC heats earth for space heating later in year
- Heating cools earth for AC later

Ground Source Heat Pump System

BIG buffer tank for Makeup Air

- 3,000 gallons
- Allows "dumb" heat pumps to meet varying loads
- Reduces peak load on heat pumps
- Reduces peak load on borehole field

Ground Source Heat Pump System

Projected Heat Pump COPs (including pumping)

- Heat: 4.4
- Cooling: 3.0
- Hot Water:2.1
 - (2.1 overall including pumping and some resistance heating HP rated at 2.6 COP)

Ground source heat pumps -- Summary

- Water-to-air for building heat/cool
- Water-to-air for ventilation post-heat/cool
- Water-to-water make-up air heat/cool
- Water-to-water + resistance for hot water
- Borehole heat exchanger size: 20,000 LF (40 wells @ 500 ft.)

Energy Modeling and Optimizing Systems 4th Biggest Slice: Service Hot Water

Code Load

 276 MMBtu/yr (80 MWh/yr)

Approaches:

- Conservation
- GSHP net COP of
 2+

NZR Annual Usage

• 38 MWh/yr

- Client Commitments and Goals
 - Energy and Environment
- Reduce hot water loads/needs
 - Dishwashing
 - Cold vs. Hot Wash
 - Handwashing and Food Prep
 - Efficient Flows/Min. Usage
 - Lower Water Temp

Ventilation

- Single energy recovery unit
- 6,500 CFM

- Water-source heat pump post conditioning with hot gas reheat (Aaon)
- Demand controlled
- Multi-zone
 - Demand controlled ERV assumed for both Code or Net Zero Ready

Modeling and Costing: Capital Costs

- Comparative cost analysis during Schematic Design for mechanical systems
- Option 1: Code v. Option 2: Net Zero Ready

Building			Added
Component	1. Code Compliant Building	2. Net Zero Ready building/GSHP	Cost
Windows	double glazed argon filled Marvin Ultimate Windows	triple glazed argon filled Marvin Ultimate Windows	
Air/Vapor Barrier	nfiltration is 0.2 CFM50/sf	Infiltration is 0.1 CFM50/sf	
	Valls: R-20 cavity insulation	Walls: R-40	
Insulation	Roof: R-49	Roof: R-60	
			\$95,153
Kitchen	Convential Kitchen with fixed speed exhaust hood	All electric kitchen with variable speed heat recovery hood	\$59,550
Commissioning	Invelope and Mechanical Systems	Envelope and Mechanical Systems	-
Solar Hot Water	None	Included	\$60,000
HVAC	Water Source Heat Pump with propane boiler and cooling tower	Ground Source Heat Pump (GSHP)	\$412,654
		Total Added Cost	\$630,000
	Ad	ded Envelope Cost Per Square Foot	\$6
		Total Added Cost Per Square Foot	\$42
	Total Added Cost As A Per	centage Of Total Construction Cost	17%
		Source: Maclay Architects' File	"BldgEnergyFinance"

Modeling and Costing: Capital Costs

- Comparative cost analysis during Schematic Design for mechanical systems
- Option 1: Code v. Option 3: Renewable w/ combustion

Building		3. Carbon Neutral Ready Building/	Added
Component	1. Code Compliant Building	ASHP + Pellet Boiler	Cost
Windows	double glazed argon filled Marvin Ultimate Windows	triple glazed argon filled Marvin Ultimate Windows	
Air/Vapor Barrier	nfiltration is 0.2 CFM50/sf	Infiltration is 0.1 CFM50/sf	
	Walls: R-20 cavity insulation	Walls: R-40	
Insulation	Roof: R-49	Roof: R-60	
			\$95,153
Kitchen	Convential Kitchen with fixed speed exhaust hood	All electric kitchen with variable speed heat recovery hood	\$59,550
Commissioning	Envelope and Mechanical Systems	Envelope and Mechanical Systems	-
Solar Hot Water	None	Included	\$60,000
нуас	Water Source Heat Pump with propane boiler and cooling tower	Ground Source Heat Pump (GSHP)	\$155,074
		Total Added Cost	\$370,000
	Ad	ded Envelope Cost Per Square Foot	\$6
		Total Added Cost Per Square Foot	\$24
	Total Added Cost As A Per	centage Of Total Construction Cost	10%
		Source: Maclay Architects' File	"BldgEnergyFinance"

SD Modeling and Costing: Operating Costs

• 20-year construction and energy costs

\$7,000,000						
\$6,000,000		Electricity Cost				
\$5,000,000		Fuel Cost				
\$4,000,000						
\$3,000,000						
\$2,000,000		Building Cost				
\$1,000,000						
\$-						
	1. COD	E 2. N	IET ZERO	READY	ewabl Abustic	

SD Modeling and Costing: Operating Costs

Capital and cumulative energy costs

SD Modeling and Costing: Operating Costs

• Financed capital (5%/20 yrs) and cumulative energy costs

1 Wood Pellet data source: www.nh.gov/cop/index.htm All other Energy data from The Vermont Fuel Price Report

How to Get to Net Zero: Design Summary Report

 Transforming market demand for NZEB •Replicable/reliable method for success

MaclayArchitects CHOICES IN SUSTAINABILITY

XXXX Dining Hall **Energy Analysis Report for** Net-Zero and Carbon-Neutral Energy Options

June 4, 2014

SECTION 1.0 Executive Summary

The following four sections include the executive summary: recommendations, justifications, benefits and unique accomplishments.

SECTION 1.1 Recommendations

Based on our analysis, the Net-Zero Ready Energy option using the Ground Source Heat Pumps is the recommended approach for achieving net-zero consumption most efficiently and cost effectively. Both the Net-Zero Ready and Carbon Neutral Ready options offer reduced 20 year capital and operating costs as well as positive cash flow from year one when energy and potential financing costs are considered and analyzed against the code compliant base case.

SECTION 1.2 Justifications

Based on the analysis included herein, the Net Zero Ready Energy option using the Ground Source Heat Pumps is recommended. Even though the Carbon Neutral Ready option appears to be a slightly better investment than the Net Zero Ready Energy (with an additional savings over 20 years of \$200,000 without financing and \$300,000 with financing), there are some additional considerations related to the on-going relignce on wood pellets that are difficult to quantify. Additionally, the inclusion of a combustible fuel source has environmental implications that must be considered, and the Carbon Neutral Ready Energy option contains a wood pellet system that has areater on-going operational and maintenance requirements in comparison to the Ground Source Heat Pump option. For these reasons, the Carbon Neutral Ready Energy option (Air Source Heat Pump with Wood Pellet Boiler system) is viewed as less desirable, and therefore this system is not recommended.

SECTION 1.3 Benefits

The Net Zero Ready Energy option achieves the following:

- 74% improved energy consumption per building area when compared to the Median Site EUI for Cafeterias and Restaurants
- An additional cost of approximately \$6/SF for the improved envelope
- \$1,600,000 in savings over the base case after twenty years of operation including capital and operating costs
- If financed, \$30,000 of savings in the first year and approximately \$1,300,000 of savings after 20 years, thus a
 - positive cash flow from year one Annual reduced carbon dioxide emissions of 360.000 lbs.
- which is equivalent to the amount of carbon sequestered in 134 acres of US forests in one year or the carbon emitted by driving a passenger car 390,000 miles

1 The net annual energy use was used for the CO2 calculation from the Net Zero Ready Energy option above the base case. Greenhouse Gas Equivalencies Calculator used on the US EPA website: http://www.epa.gov/cleanenergy/energy-resources/calculator.html

4509 Main Street Waitsfield, VT 05673 p. 802.496.4004 f. 802.496.4007

www.maclayarchitects.com

priorities for the project, balanced with the programmatic and performance requirements of the

SECTION 4.0 Considered Systems and Options

new dining facility. Utilizing the existing central district biomass plant as a source of heat was reviewed as an option along with a number of other approaches. Based on existing conditions. existing infrastructure and required performance, the field of initial options was narrowed to 5 mechanical system strategies. These 5 strategies are shown below in the bar graph, each of which considers 3 different building enclosures and kitchen exhaust hood combinations related to the 5 mechanical systems. As this graph illustrates, estimates of First Year Energy Costs were considered relative to one another.

To begin our process, multiple mechanical systems were considered related to XXXX's goals and

SECTION 5.0 Energy Usage Intensity Comparison

Commercial kitchens have sizeable equipment loads due to their cooking and dishwashing operations. Occupant loads are significant while also being concentrated within narrow windows of time at meals and events. Additionally, the extensive exhaust ventilation requirements of the kitchen increase the energy use and related operational expenses while also adding to the complexity of the mechanical systems.

The following table summarizes the Energy Usage Intensity (EUI) 3 of each of the options

		OPTION 1	OPTION 2	OPTION 3	TYPICAL EXISTING Restaurant/ Cafeteria
Electricity	kBtu/yr	878,000	805,000	662,000	N/A
Heating	kBtu/yr	2,452,000	Included w/ Electricity	656,000	N/A
Total	kBtu/yr	3,330,000	805,000	1,318,000	N/A
EUI	kBtu/sf-yr	220	53	87	207
		Percent be	etter than typical ex	isting EUI:	
		-6%	74%	58%	
			Source: Maclay Architects' Fi	le "BldgEnergyFinance"	

DD Energy Modeling and Optimizing Systems

DD Energy Modeling and Optimizing Systems

Energy Use Intensity (EUI) -- Site Energy

DD Energy Modeling and Optimizing Systems

Energy Use Intensity (EUI) -- Source Energy

• Where are we now?

• Where are we now?

Next Steps

- Construction
- Testing and Commissioning
- Post Occupancy Monitoring
- Renewable energy on campus
 - ~275 kW PV system needed
 - ~300 kW with Pizza oven
 - ~250 kW in process

Proctor Academy Dining Hall

THANK YOU!

QUESTIONS?

MaclayArchitects CHOICES IN SUSTAINABILITY

Bill Maclay, Principal Megan Nedzinski, Sr. Project Manager

Energy Balance, Inc. Andy Shapiro, President for Life

