Thermal Storage in New England
Shifting energy to reduce utility bills

March 2016
Evan Berger
Director of Energy Solutions
CALMAC Manufacturing Corp.
eberger@calmac.com
The IceBank®: Simple, Elegant

Ice-on-Coil Internal Melt Technology

Tank is 10% polyethylene tubing, 80% tap water, and 10% expansion space

Model 1190 (7.5’ in diameter, 8.5’ tall): 16-25kW load shift for 6 to 10 hours
1. There are three ways to lower electric costs in Massachusetts:

 a) Buy fewer units of energy.

 b) Purchase power when it’s cheaper, at night.

 c) Negotiate a better rate.
2. Commercial Rates are Different than Residential Rates:

 a) Residential Rates are based solely on Usage (kWh)

 b) Commercial Rates are based on a mixture of Usage (kWh) and Demand (peak kW).
Utility Bill Basics

3. Rates and tariffs are complicated. Why? A few possible reasons come to mind—
 a) Lawyers write them
 b) Regulators dislike plain English
 c) The less you understand your rates, the more utilities and third-party suppliers can earn at your expense

*Note: pure speculation

Eversource’s Greater Boston Rates

Note: this is no easier to read when printed out.
The Demand Charge Effect

Eversource Greater Boston T-2 rate

Energy (usage):
- Day: $0.08/kWh
- Night: $0.08/kWh

Demand: $29.80/kW/Month

How big an effect is the Demand Charge??

Energy is 69% less expensive at night
Demand Charge Effect.....

Do the Math (Back of the Envelope)

Conventional Chiller System
Demand Cost /month
1000 tons x 0.8 kW/ton = 800 kW
800 kW x $30.00 = $24,000/month

Energy Usage for Chiller for Month
1000 tons x 10 Hrs x 75% x 0.8 kW/ton x 22 days/month = 132,000 kWh

Approximate Cost for Demand / kWh
$24,000/132,000 kWh/month = $0.182/kWh

Therefore Daytime Energy = $0.08 + $0.18 = 26 cents/kWh
NYC Installations

One Bryant Park

Rockefeller Center

55 Water Street

Others:
1155 Avenue of the Americas (Durst Bldg)
140 West Street (Verizon)
787 Seventh Ave. (AXA Equitable)
The New School
730 Third Ave. (TIAA-CREF)
Fordham Plaza
522 Fifth Ave. (Morgan Stanley)
11 Madison Ave. (Credit Suisse)
Park Avenue Plaza (Fisher Bros.)
111 8th Avenue (Google East Coast HQ)
NYU-Poly Brooklyn Campus

Goldman Sachs HQ
Case Study
Northern New Jersey School District

The Challenge:

• School district wanted to add cooling to their largest high school, but had limited money for upgrades
• No additional electrical capacity available at the site; a substation upgrade would cost many thousands of dollars
The Solution:

- An ice-based chilled water system: two ~150-ton Trane air-cooled chillers and 12 Calmac IceBanks.
- Partial storage: the chiller makes ice at night, and then both the chiller and the ice operate during the day to meet the building’s 500 ton load.
 - Downsizing the chiller saves money and limits connected electric load.
 - The chiller operates at its max efficiency at night and during the day, and the ice provides the balance.

- The Trane Ice Completion Module is the glue that keeps this system operating effectively.
Schools have a particularly spiky peak - in many U.S. market (Florida, Ohio, Minn.), K12 projects account for >50% of all Calmac jobs.
By shaving 250 kW, we saved this customer over $30,000 per year. NJ’s rates are about two-thirds as high as Boston’s.
Ice-Enhanced Air-Cooled Chiller Plant Layout

The pre-packaged system also includes controls that be viewed and modified remotely.

Another K12 ice plant in South Florida
Benefits of Ice Storage

To the consumer:
• First cost savings: storage avoided the need for very expensive substation upgrade
• Annual electricity savings of roughly 10%
• Replicable – school district in negotiations to buy additional, identical packages for other schools

To the grid:
• Major congestion relief, targeted at the source of peak
• Higher load factor on the grid --> less T&D infrastructure
• More “smart assets” in key places; this is essentially a 250 kW/ 2.0 MWh battery in a highly congested region.
Questions?

Evan Berger, Director of Energy Solutions
CALMAC Manufacturing Corp.
eberger@calmac.com