Introduction to Energy Storage Application Metrics

Authored and Presented by: Scott L. Daniels

03-09-2016

Energy Storage: Key Metrics

Metric	Units	Definition	Notes
Energy Density	Wh/L	Energy for a given volume	When volume is a concern
Specific Energy	Wh/kg	Energy for a given mass	When mass is a concern
Power Density	W/L	Power for a given volume	When volume is a concern
Specific Power	W/kg	Power for a given mass	When mass is a concern
Self Discharge	% / Yr	Self discharge over time	When floating is a concern
"Cost" - Power	\$/W	Cost of each Watt delivered from a cell	Power applications
"Cost" - Energy	\$/Wh	Cost of each Wh delivered from a cell	Energy applications
Ext. Temperature	°C	Service/operational temperature	Extended temp applications
Cycle Life	Cycles	Cycles before EOL* is reached	Temp, Rate, DOD etc?
Shelf Life	Years	How long can the cell sit on a shelf before EOL*	Temp?
Calendar Life	Years	How long can the cell be on float/ 100% SOC before EOL*	Temp?
Safety	0-7	Per SAE Standards: 0=Safe, 7=Very Bad	Refer to SAEJ2464
Roundtrip Efficiency	%	The total efficiency of both charging and discharging	Very important for Peak Load Shift
Disposal	\$	The cost to recycle and/or dispose	True EOL replacement cost?

*Typical EOL: Is reached when 80% of the batteries initial capacity is remaining.

Application Metrics: Grid Storage

Residential Energy Storage (RES) : Med to Large Format Energy Cells

- Cost is a major concern: \$/Wh
- Reliability is a major concern
- Backup / Demand Response Infrequent Cycling *
- Peak Load Shift Frequent Cycling
- Renewables Integration Frequent Cycling
- Extended Temperature Operation

Supplies power to select systems in the home

Peak Load Shift - Demand Response – Renewables Integration: Typical 2 – 6 hour run-times: C/2 – C/6

Metric	Units	Importance	Metric	Units	Importance
Energy Density	Wh/L	High	Ext. Temperature	°C	High
Specific Energy	Wh/kg	Med	Cycle Life	le Life Cycles	
Power Density	W/L	Low	Shelf Life	Years	Med
Specific Power	W/kg	Low	Calendar Life	Years	Med (<mark>High</mark> *)
Self Discharge	% / Yr	Low	Safety	0-7 (SAE)	High
"Cost" – Energy	\$/Wh or Wh/\$	High	Round Trip Efficiency	% (>90%)	High (Low*)
"Cost" – Power	\$/W or W/\$	Med	Disposal	\$	Med

Application Metrics: Grid Stabilization

<u>Frequency Regulation</u>: Med to Large Format Power Cells

- Limited space is a concern (shipping container)
- Cost is a major concern
- Reliability is a major concern
- Safety is a major concern
- Cycling events are very frequent

Metric	Units	Importance	Metric	Units	Importance
Energy Density	Wh/L	Med	Temperature	°C	Med
Specific Energy	Wh/kg	Med	Cycle Life	Cycles	High (Micro-Cycles)
Power Density	W/L	High	Shelf Life	Years	Med
Specific Power	W/kg	Low	Calendar Life	Years	Med
Self Discharge	% / Yr	Low	Safety	0-7	High
"Cost" – Energy	\$/Wh or Wh/\$	Med	Round Trip Efficiency	% (>90%)	Low
"Cost" – Power	\$/W or W/\$	High	Disposal	\$	Med

Application Metrics: Grid Storage

Demand Response & Peak Load Shifting : Med to Large Format Mid-Rate / Energy Cells

- Limited space is a concern (shipping container)
- Backup / Demand Response Infrequent Cycling *
- Cost is a major concern
- Reliability is a major concern
- Peak Load Shift Frequent Cycling
- Round trip efficiency

Life Is (

Metric	Units	Importance	Metric	Units	Importance
Energy Density	Wh/L	High	Temperature	°C	Med
Specific Energy	Wh/kg	Med	Cycle Life	Cycles	High (Low*)
Power Density	W/L	Med	Shelf Life	Years	Med
Specific Power	W/kg	Low	Calendar Life	Years	Med (<mark>High</mark> *)
Self Discharge	% / Yr	Low	Safety	0-7 (SAE)	High
"Cost" – Energy	\$/Wh or Wh/\$	High	Round Trip Efficiency	% (>90%)	High (Low*)
"Cost" – Power	\$/W or W/\$	Med	Disposal	\$	Med

O to C house when there are O/O to O/O

Application Metrics: Grid Storage

Large Scale Wind & Solar Energy Storage: Medium to Large Format Mid-Rate Cells

- Limited space is a concern (shipping container)
- Cost is a major concern
- Reliability & Safety are major concerns
- Cycling events are frequent
- Round trip efficiency

Life Is On

Energy Storage Container System	

Metric	Units	Importance	Metric	Units	Importance
Energy Density	Wh/L	High	Temperature	°C	Med
Specific Energy	Wh/kg	Low	Cycle Life	Cycles	High
Power Density	W/L	High	Shelf Life	Years	Med
Specific Power	W/kg	Low	Calendar Life	Years	Med
Self Discharge	% / Yr	Low	Safety	0-7 (SAE)	High
"Cost" – Energy	\$/Wh or Wh/\$	High	Round Trip Efficiency	% (>90%)	High
"Cost" – Power	\$/W or W/\$	High	Disposal	\$	Med

Application Metrics: Primary Drivers

	Jensity	Energy	ensity	Power	charge	ower	inergy	ature	e	Ū.	r Life		rip Eff.	
Energy Storage Application	Energy I	Specific	Power D	Specific	Self Disc	"Cost" F	"Cost" E	Tempera	Cycle Li	Shelf Lif	Calenda	Safety	Round T	Disposa
Stable Grid UPS	Х		Х			Х						Х		
Stable Grid UPS Adjacent Markets	Х		Х			Х	Х	Х				Х		
Unstable Grid UPS	Х		Х			Х	Х	Х	Х			Х		
Stable Grid 3-Phase UPS			Х			Х						Х		
Unstable Grid Storage: RES, Telco, ATM	Х						Х	Х	Х			Х		
Grid Storage: RES	Х						Х	Х	Х		Х*	Х	Х	
Grid Storage: Adjacent Markets RES	Х						Х	Х	Х			Х	Х	
Grid Stabilization: Frequency Regulation			Х			Х			Х			Х		
Grid Storage: Demand Response, Peak Load Shifting	Х						Х		Х		Х*	Х	Х	
Grid Storage: Large Wind & Solar Energy Storage	Х		Х			Х	Х		Х			Х	Х	

Application Metrics: Secondary Drivers

	gy Density	ific Energy	er Density	ific Power	Discharge	t" Power	t" Energy	berature	e Life	. Life	ndar Life	ý	ld Trip Eff.	osal
Energy Storage Application	Ener	Spec	Powe	Spec	Self I	"Cos	"Cos	Temp	Cycle	Shelf	Caler	Safet	Roun	Dispe
Stable Grid UPS							Х			Х	Х			Х
Stable Grid UPS Adjacent Markets		Х		Х						Х	Х			Х
Unstable Grid UPS		Х		Х						Х	Х			Х
Stable Grid 3-Phase UPS	Х	Х		Х			Х			Х	Х			Х
Unstable Grid Storage: RES, Telco, ATM		Х				Х				Х	Х		Х	Х
Grid Storage: RES		Х				Х				Х	Х			Х
Grid Storage: Adjacent Markets RES		Х				Х				Х	Х			Х
Grid Stabilization: Frequency Regulation	Х	Х						Х		Х	Х			Х
Grid Storage: Demand Response, Peak Load Shifting		Х	Х			Х		Х		Х	Х			Х
Grid Storage: Large Wind & Solar Energy Storage		Х						Х		Х	Х			Х

Automotive Industry Drives the Energy Storage Industry (for now)

EV > PHEV > HEV for Total Energy = Battery Pack Size and Weight

Electric Vehicle (EV) = "Low-Rate or Energy Pack"

Key Metric: Energy Density, Specific Energy, Temperature
Shallow DOD Low-Rate Cycles (Rarely 100% DOD): Low Cycle Life
Decent Charge Acceptance
Good Low-Rate Roundtrip Efficiency

Plug-in Hybrid Electric Vehicle (PHEV) = "Mid-Rate Pack"

•Key Metric: Energy & Power Density, Specific Energy & Power, Cycle Life, Temperature

- Varying DOD Mid-Rate Cycles (often 100% DOD): High Cycle Life
- Very Good Charge Acceptance
- •Excellent Mid-Rate Roundtrip Efficiency

Hybrid Electric Vehicle (HEV) = "High-Rate or Power Pack"

Key Metric: Power Density, Specific Power, Cycle Life, Temperature
Many Varying DOD High Rate Cycles (Often 100% DOD): Very High Cycle Life

- •Excellent Charge Acceptance
- •Excellent High-Rate Roundtrip Efficiency

Popular Li-ion Chemistries in Production

Cathode and Anode

Chemistry	Chemical Formula	Full Chemical Name	Voltage
LCO	LiCoO2	Lithium Cobalt Oxide	3.6
LCO (LMO)	LiCoO2 (LiMn2O4)	Lithium Cobalt Oxide (Lithium Manganese Oxide)	3.6-3.7
LFP	LiFePO4	Lithium Iron Phosphate	3.2
LMFP	LiMn.71Fe.29PO4	Lithium Manganese Iron Phosphate	3.2
LMO	LiMn2O4	Lithium Manganese Oxide: Spinel	3.7
LMO (LNO)	LiMn2O4 (LiNiCoAlO2)	Lithium Manganese Oxide (Lithium Nickel Aluminum Oxide)	3.6-3.7
LMO (NMC)	LiMn2O4 (LiNiMnCoO2)	Lithium Manganese Oxide (Lithium Nickel Manganese Cobalt Oxide)	3.6-3.9
LMO (NCA)	LiMn2O4 (LiNiCoAlO2)	Lithium Manganese Oxide (Lithium Nickel Cobalt Aluminum Oxide)	3.6-3.7
LNO	LiNiO2	Lithium Nickel Oxide	3.6
LTO	Li4Ti5O12	Lithium Titanate (Anode)	2.2-2.5
NCA	LiNiCoAlO2	Lithium Nickel Cobalt Aluminum Oxide	3.6-3.7
NMC	LiNiMnCoO2	Lithium Nickel Manganese Cobalt Oxide	3.7

Realities of Li-ion

Cost of Li-ion portrayed often that of energy, not power cells

• Example below shows to Li-ion cells that are physically the same size, but have vastly different performance characteristics and costs.

