Basement Floor

- Bedrock Site
 - Shallow soil depth
 - Blasting required
 - Limited floor options
- Typical approach: pinned footings
 - Numerous penetrations of floor insulation
- ICF Foundation Wall
 - lots of site work cutting EPS

Basement Floor

- Solution: continuous insulated raft
 - Engineered to avoid footings
 - Blasting fill provided level base
 - Slab edge element for continuous insulation

Basement Floor

Cold Climate Passive House Production Facility

Walls

- Basement
 - Poured concrete with 12" exterior EPS:
- Main
 - 2x8 structural wall with mineral wool batts
 - 7" one-sided SIPs
 - Gypsum board for fire rating

Intermediate Floors

- Ground Floor
 - 10" core slab
- Second and Third
 - CLT
 - Foam filled
 - Acts as finish

Cold Climate Passive House Production Facility

26

Roofs

- Top Floor •
 - Truss

Terraces

- 11" CLT

- 24" dense pack cellulose

- sloped insulation (various thicknesses)

Assembly Performance Summary

Element	U-value [W/m ² K]	R-value
Floor Slab	0.11	R52
Basement Wall	0.11	R52
Main Wall	0.12	R47
CLT Roof	0.07 – 0.11	R52-R81
Top Roof	0.07	R81

Terraces

 CLT prevents insulation above if flush threshold is desired

Psi-value = 0.064 W/mK (0.037 BTU)

Terraces

- Solution: raised floor above CLT
- Issues:
 - Lose CLT floor finish
 - Additional construction
 - Deemed acceptable

Airtightness Strategy

Basement Floors & Walls

- Taped 15 mil Stego membrane

Main Walls

- Intello required to avoid dew point issues
- Protected by service cavity where services are installed
- Wrapped around intermediate floors

Roofs

- Taped Plywood
- Intello wrapper around CLT (exposed floors)
- Windows
 - Intello taped to frames or plywood buck

Windows

- Comfort Requirement: U_{w,installed} ≤ 0.70 W/m²K (0.12 BTU)
- Only <u>one</u> certified cold climate window available
 - Price premium
- Could relax performance by including heat source by window
 - Layout and heating system not conducive for this
 - Baseboard heaters would cause issues with total electrical capacity

HVAC

Cold Climate Passive House Production Facility

Ventilation

- Building Layout facilitated centralized approach
- Flow rates controlled based on occupancy
 - Working hours \rightarrow office & production
 - − Lunch \rightarrow shift to canteen
- Extract in production rooms enable more balanced flow
- Only one damper pair per floor required

Ventilation

Issues:

- Floor Layout only allowed for heating/cooling ducting in suspended ceiling, not additional ventilation ducting
- Engineer and designer were hesitant to rely on single machine
- Opted for semi-decentralized with 7 HRVs

Numerous issues...

Decentralized Ventilation

Issues

- Overventilation
 - Extract rooms \rightarrow Supply rooms
 - Code rates much higher
- No humidity recovery (HRV)
- Uncertified Performance
 - 75% agreed with PHI
- Longer ducts
 - Up to 10.5m (35 ft)!
 - − Up to $6\% \downarrow$ in HRE
- Ducts shared with heating/cooling system
 - Mismatch in flow rates

Heating & Cooling

- Residential VRF system
 - Heads installed in suspended ceiling above corridors
- Total Electrical Capacity limited by utility company
 - Process, elevator loads
- No products of small enough capacity
- HP system
 - Manufacturer claimed it could operated below design temperature
 - Code requires backup system for peak loads
 - Electric resistance not possible, due to capacity limit
 - Solution: Propane-fired boiler
 - Also used for DHW (small demand)

Summary

- Think through the details early
 Initial thermal bridging modelling
- Simplified approach critical in cold climates
- Find engineers who are willing to explore options
- Cold climate production innovation required

Questions?

Thank you for your attention

Andrew Peel

Peel Passive House Consulting

- t: 905 483 9925
- e: andrew@peelpassivehouse.ca