Flashings shouldn't dam

JLC, Harrison McCampbell, *Rethinking Window Flashing*

JLC, George Tsongas, Sheathing Damage From Using Wide Impermeable Flashing

Thermal Control

Strong thermal control is based on:

- Continuous insulation layer
- Thermal bridge free joints and penetrations

Integrated Penetrations

atourseventive | www.fourseventive.com | 800-995-8329

Protected Control Layers

Verified with blower door & repair

To deliver predictable high performance one must blower door enclosure, find leaks and repair.

atourseventive | www.fourseventive.com | 800-995-6329

High Performance Windows

High Performance Windows

Properly installed high performance windows support enclosure performance.

Window performance: airtightness glazing value frame value SHGC & VT shading - orientation - %

Optimized windows can improve the energy balance.

Uglass matters

Triple glazed PH window 64°F min. 6°F 68°F comfort

Frames and installs are weakest link

Passive House Institute

frames determine class...

Climate zone	Hygiene criterion f _{Rs≔0,25 m²K/W} ≥	Component U-value [†] [W/(m ² K)]	U-value installed [W/(m ² K)]	Reference glazing [W/(m²K)] 0.35	
1 Arctic	0.80	0.40	0.45		
2 Cold	0.75	0.60	0.65	0.52	
3 Cool-temperate	0.70	0.80	0.85	0.70	
4 Warm-temperate	0.65	1.00	1.05	0.90	
5 Warm	0.55	1.20	1.25	1.10	
6 Hot	None	1.20	1.25	1.10	
7 Very hot	None	1.00	1.05	0.90	
1 The following applies 1 the glazing used for the tively according to ISO 1 as the limit value of the inclined building compor creased by 0.10 W/(m ² K Exception: in cool-tempo	for inclined (45°) and reference inclination (5099, should be use uninstalled compone nents compared to the (), while that of the ho arate climates the lim	horizontal (0°) com , determined accord ed. The limit value in nt. The limit value of the limit value of the prizontal componen it value of the inclin	ponents: the act ling to DIN EN 6 the installed sta if the component vertical component t is increased by red component is	Iual U ₉ value o 73, alterna- ate is the same t U-value for ent is in- 0.20 W/(m ² K) s increased by	

Table 2: Passive House efficiency classes for transparent building components

Ψ _{opaque} [W/(mK)]	Passive House efficiency class	Description				
≤ 0.065	phA+	Very advanced component				
≤ 0.110	phA	Advanced component				
≤ 0.155	phB	Basic component				
≤ 0.200	phC	Certifiable component				

*Better glazing yields better overall window performance.

...and Uw-installed determine performance

* This page PHI verified: Benjamin Krick 7.25.13.

Solar Heat Gain Coefficient (SHGC)

The SHGC is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward. SHGC is expressed as a number between 0 and 1. The lower a window's solar heat gain coefficient, the less solar heat it transmits.

In heating dominated climates a relatively high Solar Heat Gain Coefficient is beneficial when coupled with good shading control.

Shading is essential

....and is very effective

Seatourseventive www.fourseventive.com 800-995-6329

Skylights Energy Balance (heating)

Building Footprint: 200ft x 200ft Skylights: 36 (38"x38" each) Total glass area: 323 SF

Skylight	Thermal Bridge Free	Curb Insulation	Uglass BTU/hr.ft2°F	SHGC	Losses kBTU/yr	Solar Gains	Total Heat Gain or Loss	Total of heat loss/gain for building (%)	
Double pane	No	None	0.24	30%	25935	11687	14248	3 212748 (7%)	
Triple pane - conventional spacer	No	Non-Continuous	0.18	30%	23907	11053	12854	4 210114 <mark>(6%)</mark>	
Triple pane - better spacer	Yes	Non-Continuous	0.18	30%	21907	11053	10854	4 208898 <mark>(5%)</mark>	
Advanced component – low SHGC	Yes	4" Continuous	0.13	30%	10835	11032	-197	198079 (0%)	
Advanced component – high SHGC	Yes	4" Continuous	0.13	50%	10835	18332	-7497	198079 (-4%)	
Advanced component – high SHGC, shaded in summer	Yes	4" Continuous	0.13	50%	10835	18387	-7552	2 191389 (-4%)	

Stational www.fourseventive.com | 800-995-6329

Window Energy Balance (winter)

Climate:	_									81.8	
Window area orientation	Global radiation (cardinal points)	Shading	Dirt	Non- perpendicu- lar incident radiation	Glazing fraction	g-Value	Window U-Value	Glazing area	Average global radiation	Transmission losses	Heat gains solar radiation
maximum:	kWh/(m*a)	0.75	0.95	0.85			WI(mRK)	m²	- kWh/(m²a)	kWh/a	kWh/a
North	123	0.76	0.95	0.85	0.664	0.50	0.82	12.63	131	1273	511
East	280	0.49	0.95	0.85	0.470	0.50	1.01	0.26	205	46	41
South	564	0.83	0.95	0.85	0.671	0.50	0.80	13.30	538	1293	2385
West	282	0.73	0.95	0.85	0.656	0.50	0.83	2.78	376	287	308
Horizontal	472	0.41	0.95	0.85	0.371	0.30	1.57	0.23	472	79	11
		Total or average	usius for a	Inindone	-	0.50	0.82	29.20		2977	3225

From PHPP9 - Heating and cooling tab

More useful winter gains than losses overall – with really good windows and installation details:

South facing windows are heating elements

Short Break

The Installation Process

Window Installation Process

Design window placement for predictability and durability: CONTINUITY.

Continuity of control layers. Simplicity of connections. Select compatible materials Sequencing Install

Exterior opening prep Interior opening prep Window placement Connections Testing/Verification

Robert Swinburn Architect

Design

- Continuity at Junctions
- Simplify Details
- Consider sequencing
- Integrate all penetrations
- Protection: back vented rainscreens & service cavities.

Continuity: Window placement matters

Stationareventive | www.fourseventive.com | 800-995-6329

Seatourseventive | www.fourseventive.com | 800-995-8329

Connection Continuity

[#] atourseventive | www.fourseventive.com | 800-995-6329

Connection Material Selections

Airtightness & Vapor Control: Tapes Caulks Primers

Insulation: Fibrous fiberglass mineral wool sheeps' wool Foam?

Foam?

Foam does not provide airtightness. Even when it looks good, it leaks.

Tapes (Cold Climate)

EXTERIOR ONLY

Sill tape: Vapor **Closed Acrylic/Butyl** ProClima EXTOSEAL **ENCORS**

Face Tape/Inside Corners: Vapor **Open Fleece SOLID** Acrylic split backing, ProClima CONTEGA Solido Exo (Zip Tape is vapor closed)

Vapor Open Fleece, SOLID Acrylic, adhesive strip on reverse side. ProClima CONTEGA Solido Exo - D

EXTERIOR & INTERIOR

Flat Taping: Vapor permeable SIGA Wigluv, and SOLID Acrivlic, **ProClima TESCON** Vana (3M 8067 is vapor retarding)

Inside Corners: Vapor Permeable SOLID Acrylic split backing, ProClima **TESCON Profil**

Pre-folded Inside Corners: Vapor Permeable, Acrylic, adhesive strip on reverse side, SIGA Fentrim IS 2 & ProClima TESCON Profect with SOLID Acrylic.

INTERIOR ONLY

PRESSFIX

Applicator

Tape

Face Tape/Inside Corners: Vapor Retarding Fleece, SOLID Acrylic split backing, ProClima CONTEGA Solido SL

Pre-folded inside corners: Vapor Retarding Fleece, Acrylic pre-folded. SIGA, Fentrim IS 20

Zero Reveal Tape: Vapor Retarding Fleece, SOLID Acrylic, adhesive strip on reverse side ProClima CONTEGA Solido SL - D

Statiourseventive | www.fourseventive.com | 800-995-8329

Tapes for Zero Reveal:

Exterior **Inside Corner Tape**: adhesive strip on reverse side at jambs, head & sill

Interior **Zero Reveal Tape**: adhesive strip on reverse side at jambs, head & sill

SILL TAPE: Extend 6" up jambs & approx 1" at wall face

atourseventive | www.fourseventive.com | 800-995-8329

Tapes for Face Connections:

Exterior Option A: Face Tape/Inside Corners: Vapor Open w/ split back SOLID Acrylic at jambs, head & sill

Exterior Option B: Pre-folded inside Corner Tape: Vapor Permeable SOLID Acrylic at jambs, head & sill

Interior Option A: Face Tape/Instide Corners: Vapor Retarding SOLID Acrylic, w/split back at jambs, head & sill.

Exterior Option C: Inside Corner Tape: Vapor Permeable SOLID Acrylic with split backing at jambs, head & sill.

Interior Option C: Inside Corner Tape: Vapor Permeable SOLID Acrylic with split backing at jambs. head & sill.

& sill.

SILL TAPE: Extend 6" up jambs & approx 1" at wall face

Tapes for Flange Connections:

Exterior Option A: Face Tape/Inside Corners: Vapor Open w/ split back SOLID Acrylic at jambs, head & sill

Exterior Option B:

Flat Tape: Vapor

Permeable SOLID

sill.

Acrylic at jambs, head &

Interior Option A: Face Tape/Inside Corners: Vapor Retarding SOLID Acrylic, w/split back at jambs, head & sill.

Inside Corner Tape: Vapor Permeable SOLID Acrylic with split backing at jambs, head & sill.

Interior Option C: **Pre-folded inside Corner** Tape: Vapor Permeable SOLID Acrylic at jambs, head & sill.

Exterior **SILL TAPE**: Extend 6" up jambs & approx 1" at wall face

States and the second secon

Caulk connections?

Joint Preparation

For joints less than one-half (1/2) inch wide, sealant depth should be equal to the width of the joint.

For joints ranging from one-half $(\frac{1}{2})$ to one (1) inch wide, sealant depth should be approximately onehalf $(\frac{1}{2})$ the joint width.

In deep joints, control sealant depth by installing closed cell backer rod. The diameter of soft backer rod should be 25% greater than the joint width. Do not puncture backer rod.

Where joint depth does not permit use of a backer rod, install bond breaker tape to prevent three point bonding.

Be sure caulks are compatible with other materials. Choose appropriate caulks for interior and exterior usage.

