

Best Practices for All-Electric Homes and Apartments

NESEA Building Energy Conference March 2017 Robb Aldrich, <u>raldrich@swinter.com</u>

Steven Winter Associates, Inc. NEW YORK, NY | WASHINGTON, DC | NORWALK, CT

866.676.1972 | SWINTER.COM

Outline

- Why are we talking about all-electric homes?
- Space Heating: air-source heat pumps <break?>
- Water Heating: resistance, heat pumps, solar

Why are we talking about allelectric homes?

What is an Air Source Heat Pump?

Quick answer: An air conditioner that can run in the reverse.

An AC moves heat from indoors to outdoors in the summer.

A heat pump moves heat from outdoors to indoors in the winter

Air Conditioner

Heat Pump

Old Heat Pumps

- Used very often further south.
- Old HP's didn't work well below ~30°F
- BAD reputation in colder climates

New ASHPs in the past ~10 years that can work well up north!

Air-Source

Takes heat from (and rejects heat to) outdoor air.

Inverter, inverter-driven Variable-speed compressor.

Ductless Heat Pump (DHP) Pretty self-explanatory

Mini-Split

Split and mini (<1.5 tons or so) Ducted (compact) or Ductless Usually 1:1

Multi-Split (multi-port, multi-zone, <u>not</u> VRF) One outdoor unit 2+ indoor units Ducted, Ductless, or mix 1.5 – 4 tons typ.

Images from Mitsubishi

11

VRF (variable refrigerant flow) Modular outdoor units, ~6-12 tons typ. Many indoor units, many types Exp. valves at indoor fan coils

Images from Mitsubishi

12

Central, Split

Typ. 2 - 5 tons

One central, ducted air handler

More conventional residential H/C system

"Fully ducted"

NEEP Strategy Report

NEEP Market Strategy Report

Residential market in Northeast:

 ~300,000 units/year and growing (2015)

Installed cost of ductless mini-splits

• \$3,000 - \$5,000 on average

http://www.neep.org/ sites/default/files/NEE P ASHP 2016MTStrat egy Report FINAL.pdf One big need identified in the market study:

What ASHPs are appropriate for cold climates?

Standard Info

- HSPF (heating season performance factor) – not a great indicator of cold weather performance
- **Manufacturer info** Inconsistent presentation of performance data

NEEP's Cold Climate Spec.

Three key requirements:

- Variable-speed compressor
- At <u>maximum</u> capacity (heat output)
 COP @ 5°F >1.75

 Provide performance data in the specified format

Manufacturers fill this out

			Capacity Level		
Outdoor	Indoor		Minimum	Rated	Maximum
Dry Bulb (°F)	Dry Bulb (°F)		wiininnunn	Rateu	IVIAXIIIIUIII
47°F	70°F	Btu/h			
		kW			
		СОР			
17°F	70°F	Btu/h			
		kW			
		СОР			
5°F*	70°F	Btu/h			
		kW			
		СОР			

Я				C	apacity Level	
SECTION FOUR	Outdoor Dry Bulb (°F)*	Indoor Dry Bulb (°F)		Minimum	Rated	Maximum
			Btu/h			
Optional:		70°F	kW			
Opt			СОР			

NEEP's Cold-Climate ASHP Spec.

http://www.neep.org/initiatives/high-efficiency-products/emergingtechnologies/ashp/cold-climate-air-source-heat-pump

Download Spreadsheet

LG	7180060	LMU18CHV	Non-Ducted Indoor Units	9.7	22
LG	7180062	LMU24CHV	Non-Ducted Indoor Units	10.6	21.7
LG	7184507	LMU24CHV	Mixed	10.2	19.6
LG	8111355	LMU30CHV	Non-Ducted Indoor Units	10	22
LG	7180063	LMU36CHV	Non-Ducted Indoor Units	10	22
LG	8111358	LMU480HV	Non-Ducted Indoor Units	10	19.5
Mitsubishi	7451974	MXZ-2C20NAHZ	Non-Ducted Indoor Units	9.8	17
Mitsubishi	7451969	MXZ-3C24NAHZ	Non-Ducted Indoor Units 10		19
Mitsubishi	7451794	MXZ-3C30NAHZ	Non-Ducted Indoor Units	11	18
Mitsubishi	7434482	MXZ-4C36NAHZ	Non-Ducted Indoor Units	11.3	19.1
Mitsubishi	7434477	MXZ-5C42NAHZ	Non-Ducted Indoor Units	11	19
Mitsubishi	4908219	MUZ-FE09NA	MSZ-FE09NA 10		26
Mitsubishi	4934170	MUZ-FE12NA	MSZ-FE12NA 10.5		23
Mitsubishi	4217888	MUZ-FE18NA	MSZ-FE18NA 10.3		20.2
Mitsubishi	7002062	MUZ-FH09NA	MSZ-FH09NA	13.5	30.5
Mitsubishi	7002063	MUZ-FH12NA	MSZ-FH12NA 12.5		26.1
Mitsubishi	7002444	MUZ-FH15NA	MSZ-FH15NA	12	22

How do ASHPs actually perform in buildings?

Field Evaluations

- DOE funding through Building America Program
- Partnership with Efficiency Vermont
- 10 DHPs in homes around New England
- Monitored winter 2013-14
- Report online: <u>http://apps1.eere.energy.gov/buildings/publications/pdfs/building_a</u> <u>merica/inverter-driven-heat-pumps-cold.pdf</u>

Air Temperatures

Flow Testing

Flow vs. Fan Current

Powerwise / Site Sage

Measured COP

COP= Energy Out (Flow, Temperature diff.) Energy In (Elec. Panel)

Seasonal COP Summary

Seasonal COP Summary

Same HP- Different Results

Western MA HDD65: 6,929 Design Temp: 2°F SCOP: 1.6 Near Burlington, VT HDD65: 7,956 Design Temp:-4°F SCOP: 2.3

Heat Output-FE18

Possible Reasons for Lower Performance

- Charge?
- Lower heating load
- Low fan speed

Possible Reasons for Lower Performance

- Charge?
- Lower heating load
- Low fan speed
- Higher return air temperatures

High Return Temp?

High Return Temp?

Possible Reasons for Lower Performance

- Charge?
- Lower heating load
- Low fan speed
- Higher return air temperatures
- Setback/control

Site 2 – CT Passive House

Heat Output – FE12

Site 2

Heat Output – FE12

Heat Output – Fujitsu 15RLS2

Conclusions

Capacity

In general, ASHPs <u>DO</u> provide rated heat output.

Efficiency WIDE range in efficiencies; often not as efficient as we'd hoped...

More recent study:

<u>http://ma-eeac.org/wordpress/wp-content/uploads/Ductless-</u> <u>Mini-Split-Heat-Pump-Impact-Evaluation.pdf</u>

Energy Modeling

PHPP:613 kWh/yBEopt (Energy Plus):738 kWh/yREM/Rate:1,053 kWh/y

Measured ASHP Electricity: 1,446 kWh/y

(for heating season only)