Electric vehicle overview

Building In The Age of Electric Vehicles

Stephen Russell
Department of Energy Resources
Massachusetts Clean Cities Coalition
03-07-2017
EV Basics: Benefits and Considerations

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increased energy security</td>
<td>• Higher initial vehicle cost</td>
</tr>
<tr>
<td>• Improved fuel economy</td>
<td>• Limited infrastructure availability</td>
</tr>
<tr>
<td>• Lower fuel costs</td>
<td>• Battery life</td>
</tr>
<tr>
<td>• Low or zero tailpipe emissions</td>
<td>• Reduced all-electric range</td>
</tr>
</tbody>
</table>

Image: NREL Image Gallery #28974
Non-residential EVSE increases the electric driving range for PEV owners and enables drivers without access to home charging to own PEVs.
Electric Vehicle Supply Equipment (EVSE) Overview

EVSE consists of all the equipment needed to deliver electrical energy from an electricity source to a plug-in electric vehicle battery.

<table>
<thead>
<tr>
<th>Charging Level</th>
<th>Vehicle Range Added per Charging Time and Power</th>
<th>Supply Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Level 1</td>
<td>4 mi/hour @ 1.4kW</td>
<td>120VAC/20A (12-16A continuous)</td>
</tr>
<tr>
<td></td>
<td>6 mi/hour @ 1.9kW</td>
<td></td>
</tr>
<tr>
<td>AC Level 2</td>
<td>10 mi/hour @ 3.4kW</td>
<td>208/240VAC/20-100A (16-80A continuous)</td>
</tr>
<tr>
<td></td>
<td>20 mi/hour @ 6.6kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 mi/hour @ 19.2 kW</td>
<td></td>
</tr>
<tr>
<td>DC Fast Charging</td>
<td>24 mi/20minutes @24kW</td>
<td>208/480VAC 3-phase (input current proportional to output power; ~20-400A AC)</td>
</tr>
<tr>
<td></td>
<td>50 mi/20minutes @50kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 mi/20minutes @90kW</td>
<td></td>
</tr>
</tbody>
</table>

Photo from Angela Costanzo, NREL

Photo from WSDOT
Installation Costs – Level 1

Level 1 Installation

$0-$3,000

Main L1 Installation Cost Factors

• Offer an existing electrical outlet for drivers to plug in cord set ($0)
• Install an electrical outlet or a wall mounted Level 1 EVSE ($300-$1,000)
• Install a pedestal Level 1 EVSE ($1,000-$3,000 assuming no major electrical work needed)
Level 2 EVSE Unit (single port)

$400-$6,500

Main L2 EVSE Cost Factors
- Mounting (wall/pedestal)
- Communications capabilities
- Advanced features

Ballpark Cost Ranges for Level 2 EVSE
Main DCFC EVSE Cost Factors

- Power output ranges from 24-250kW (commonly 50-60kW)
- Number of ports (may have multiple connector standards but only charge one vehicle at a time)
- Advanced features

DCFC Connectors
SAEJ1772 CCS and CHAdeMO
Installation Costs – Connecting EVSE to Electrical Service

Simple/lower cost – run conduit along the wall a short distance from the electrical service to the EVSE

Complex/higher cost – trench or bore through concrete to run conduit a long distance from electrical service to EVSE

Trenching cost varies by location but in some areas the cost for digging the trench, laying conduit, then back-filling is:

- $10-$20/ft. for soil
- $100-$150/ft. for asphalt or concrete

Concrete cut out and soil removed to access underground electric service
Installation Costs – New Electrical Service or Upgrades

3 Fundamental EVSE Electrical Needs
1. Sufficient electrical capacity from the utility connection to the electrical panel.
2. Sufficient electrical capacity at the panel.
3. A dedicated circuit for each EVSE unit on the electrical panel (in most cases).

Consult with electrician and utility to determine if electrical work is needed and estimate cost.

- Service upgrade – Increasing the electrical capacity from the utility to an existing electrical panel, e.g. new transformer. $10,000-$25,000 (WCEH).
- New electrical service – Bringing electricity from the utility to a site that did not previously have electricity. $3,500-$9,500 (EV Project)
- Electrical panel work – Replacing or upgrading the panel, re-working the panel to provide more breaker positions, or adding a sub-panel. Cost is very site specific. About 72% of Level 2 commercial installations required panel work (EPRI)
Tips for Minimizing EVSE Costs – EVSE Unit Selection

EVSE Unit Selection
- Minimum level of features needed
- Wall mounted EVSE unit (if possible)
- Dual port EVSE minimizes installation costs per charge port.
- Choose the quantity and level of EVSE units to fit within that available electrical capacity

Long Term Planning
- Discuss electrical service needs and charges with your utility
- Avoid demand charges
- Upgrade your electrical service for your anticipated long term EVSE load and run conduit to your anticipated future EVSE locations.
- Consider the electricity infrastructure for EVSE when building a new facility

Location
- Minimize the trenching/boring distance.
- Place the EVSE unit close to the electrical service
- Use signage to direct PEV drivers to the EVSE unit
- Choose a location that already has space on the electrical panel with a dedicated circuit
Draft/suggested EV-Ready Regulations

- **N1104.2 (R404.2) Electric Vehicle Service Equipment (EVSE) Ready (Mandatory).** In accordance with 527 CMR and this section, at least one minimum 40-ampere branch circuit shall be provided to garages and/or the exterior of the building to accommodate a future dedicated Society of Automotive Engineers (SAE) standard J1772-approved Level 2 EVSE. The circuits shall have no other outlets. The service panel shall provide sufficient capacity and space to accommodate the circuit and over-current protective device. A permanent and visible label stating “EV READY” shall be posted in a conspicuous place at both the service panel and the circuit termination point.

<table>
<thead>
<tr>
<th>Type of Building</th>
<th>Number of spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-family dwelling:</td>
<td>1</td>
</tr>
<tr>
<td>Two-family dwelling:</td>
<td>1</td>
</tr>
<tr>
<td>3 or more unit building:</td>
<td>1 per two units</td>
</tr>
</tbody>
</table>
One Final thought - Resiliency

Using the batteries in cars and Buses for:

Vehicle to grid (V2G) and Vehicle to Building (V2B)
- Managed charging
- Use battery storage to offset demand charges
- Charge battery with energy from renewables (solar or wind)
- Participate in energy markets
References and Resources

- AFDC Vehicle Cost Calculator (http://www.afdc.energy.gov/calc/)
- AFDC EV Emissions page (http://www.afdc.energy.gov/vehicles/electric_emissions.php)
- AFDC Alternative Fuel and Advanced Vehicle Search (http://www.afdc.energy.gov/vehicles/search)
- AFDC Station Locator Database (http://www.afdc.energy.gov/locator/stations/)
- Clean Cities Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (http://www.afdc.energy.gov/pdfs/51227.pdf)
- Electric Drive Transportation Associations (EDTA) Electric Drive Sales Dashboard (http://electricdrive.org/index.php?ht=d/sp/i/20952/pid/20952)
- National Fire Protection Association EV Safety Training (http://www.evsaftytraining.org)
- National Alternative Fuels Training Consortium First Responder Safety Training (http://www.naftc.wvu.edu/course_workshop_information/first_responders)
- Plug In America’s Vehicle Tracker (http://www.pluginamerica.org/vehicles)
1. Costs Associated with Non-Residential EVSE:

3. Clean Cities’ Plug-In Electric Vehicle Handbook for:
 • Workplace Charging Hosts:
 • Public Charging Station Hosts: http://www.afdc.energy.gov/pdfs/51227.pdf
 • Electrical Contractors: http://www.afdc.energy.gov/pdfs/51228.pdf

4. INL Lessons Learned papers from the EV Project: http://avt.inl.gov/evproject.shtml

5. Electric Vehicle Supply Equipment Installed Cost Analysis study by EPRI:
 http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002000577

 • ADA Guidance: http://energy.gov/eere/vehicles/ada-requirements-workplace-charging-installation
 • Signage Guidance: http://energy.gov/eere/vehicles/workplace-charging-challenge-signage-guidance

7. Siting and Design Guidelines for EVSE:
Contact Information

Thank You

Stephen Russell
Email: stephen.russell@state.ma.us
100 Cambridge Street Suite 1020
Boston MA 02114
617 626-7325
Workplace Charging Resources

Workplace Charging Challenge
http://www.energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge

PEV Handbook for Workplace Charging Hosts

More PEV and Charging Information:
http://www.afdc.energy.gov/fuels/electricityBasics.html
Helpful Resource:

Clean Cities PEV Handbooks are great resources for fleet managers, station owners, and individuals who are ready to start using PEVs and infrastructure.

afdc.energy.gov/publications