HEATING AND COOLING
HEATING AND COOLING

• Modeled building as if electric resistance heating, and post-processed heating energy using estimated COP of 2.2
HEATING AND COOLING

- Modeled building as if electric resistance heating, and post-processed heating energy using estimated COP of 2.2
- Cooling was modeled with an EER of 11.0
HEATING AND COOLING

- Modeled building as if electric resistance heating, and post-processed heating energy using estimated COP of 2.2
- Cooling was modeled with an EER of 11.0
- Infiltration was worked backwards from an airtightness target
RESULTS

<table>
<thead>
<tr>
<th>CD Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat, HP</td>
<td>21,081</td>
</tr>
<tr>
<td>Cool</td>
<td>14,965</td>
</tr>
<tr>
<td>Fans</td>
<td>12,162</td>
</tr>
<tr>
<td>Lights</td>
<td>22,542</td>
</tr>
<tr>
<td>E-10 plug</td>
<td>28,112</td>
</tr>
<tr>
<td>Add'l plug</td>
<td>3,720</td>
</tr>
<tr>
<td>DHW</td>
<td>6,187</td>
</tr>
<tr>
<td>Total</td>
<td>108,768</td>
</tr>
<tr>
<td>kWh/sf</td>
<td>6.8</td>
</tr>
<tr>
<td>kBTU/sf/yr</td>
<td>23.2</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>CD Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat, HP</td>
<td>21,081</td>
</tr>
<tr>
<td>Cool</td>
<td>14,965</td>
</tr>
<tr>
<td>Fans</td>
<td>12,162</td>
</tr>
<tr>
<td>Lights</td>
<td>22,542</td>
</tr>
<tr>
<td>E-10 plug</td>
<td>28,112</td>
</tr>
<tr>
<td>Add'tl plug</td>
<td>3,720</td>
</tr>
<tr>
<td>DHW</td>
<td>6,187</td>
</tr>
<tr>
<td>Total</td>
<td>108,768</td>
</tr>
</tbody>
</table>

| kWh/sf | 6.8 |
| kBTU/sf/yr | 23.2 |

- Vetted each category of end use with other buildings with motivated occupants
PV SYSTEM

- Sunpower panels with SolarEdge optimizers and inverters
PV SYSTEM

- Sunpower panels with SolarEdge optimizers and inverters
- 345 panels of 345WDC rating, total 119 kWDC
PV SYSTEM

- Sunpower panels with SolarEdge optimizers and inverters
- 345 panels of 345WDC rating, total 119 kWDC
- Estimated annual output about 140,000 kWh
AIR BARRIER
AIR BARRIER

• We set an ambitious air tightness target – 0.05 CFM50 per sf of thermal enclosure
AIR BARRIER

• We set an ambitious air tightness target – 0.05 CFM50 per sf of thermal enclosure

• Larger buildings are tested at 75 Pascals, which is equal to 0.064 CFM75 per sf of thermal enclosure (PHIUS 0.08)
AIR BARRIER

• We set an ambitious air tightness target – 0.05 CFM50 per sf of thermal enclosure

• Larger buildings are tested at 75 Pascals, which is equal to 0.064 CFM75 per sf of thermal enclosure (PHIUS 0.08)

• Our maximum leakage target was 2,015 CFM75
AIR BARRIER

- We set an ambitious air tightness target – 0.05 CFM50 per sf of thermal enclosure
- Larger buildings are tested at 75 Pascals, which is equal to 0.064 CFM75 per sf of thermal enclosure (PHIUS 0.08)
- Our maximum leakage target was 2,015 CFM75
- During design, there was input from the CM as well as the design team
AIR BARRIER
Base Approach
AIR BARRIER
Base Approach

[Diagram of air barrier system with various layers and dimensions indicated]
AIR BARRIER
Base Approach
QUALITY ASSURANCE TESTING

- 2nd floor corner testing before windows
- 2nd floor corner testing after windows in
- Whole building test after curtainwall was in place
QUALITY ASSURANCE TESTING

• 2nd floor corner testing before windows
• 2nd floor corner testing after windows in
• Whole building test after curtainwall was in place
• Without this process it is doubtful that the target air tightness would have been achieved
QUALITY ASSURANCE TESTING
September 25, 2015
QUALITY ASSURANCE TESTING

September 25, 2015
QUALITY ASSURANCE TESTING
September 25, 2015
QUALITY ASSURANCE TESTING

January 1, 2016