Air Tightness Requirements of the Passive House Standard

Mike O’Donnell
Scott Pusey

NESEA BuildingEnergy Boston Conference
March 2018
Overview of Presentation

• Brief Overview of Passive House
• PH Air Tightness Requirements
• Design Phase
• Construction Phase QA/QC
• Case Studies
 – The House at Cornell Tech
 – St. John Neumann
 – Beach Green North
What is Passive House (PH)?

- PH is a building standard
- The most rigorous energy efficiency certification available
- Performance based approach
- Attention to insulation continuity and reduction of thermal bridges
- Emphasis on balanced ventilation
What can be certified PH?
Passive House Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space heating/cooling demand</td>
<td>4.75 kBtu/ft² yr</td>
</tr>
<tr>
<td>Whole building energy demand*</td>
<td>38.0 kBtu/ft² yr</td>
</tr>
<tr>
<td>Air infiltration</td>
<td>0.6 ACH@50**</td>
</tr>
<tr>
<td>Frequency of overheating***</td>
<td><10%</td>
</tr>
</tbody>
</table>

* Source
** PHI Limit
*** Must not be exceeded if no mechanical cooling is present.
PH Design Principles

- Continuous Insulation
- Minimize Thermal Bridging
- **Airtight Construction**
- Energy Recovery Ventilation
- Optimal Solar Orientation and Shading
PH AIR TIGHTNESS
REQUIREMENTS
PHI vs PHIUS: Differences

<table>
<thead>
<tr>
<th>Requirement</th>
<th>PHI</th>
<th>PHIUS</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comfort criteria</td>
<td>Mandatory</td>
<td>Recommended</td>
<td>Leads to triple pane windows in NYC for PHI</td>
</tr>
<tr>
<td>Whole building energy demand</td>
<td>/ft² of conditioned envelope</td>
<td>/person</td>
<td></td>
</tr>
<tr>
<td>Heating demand</td>
<td>Same for all climates</td>
<td>Changes based on climate</td>
<td></td>
</tr>
<tr>
<td>Cooling demand</td>
<td>Changes based on latent load from climate and occupant density & internal loads</td>
<td>Changes based on climate, sensible only</td>
<td>Temporary adjustment being allowed for cooling demand by PHIUS</td>
</tr>
<tr>
<td>Air Tightness</td>
<td>0.6 ACH50 required / 0.033 cfm/ft² of façade recommended for large buildings</td>
<td>0.08 cfm/ft² of façade for 6+ stories & non-combustible, 0.05 cfm/ft² for all others</td>
<td></td>
</tr>
<tr>
<td>Ventilation</td>
<td>Not a lot of approved ERVs in US</td>
<td>Approve a lot more ERVs</td>
<td></td>
</tr>
<tr>
<td>Cooling & Heating Loads</td>
<td>Can certify based on demand or load</td>
<td>Must meet both demand and load thresholds</td>
<td>Can be difficult to meet both</td>
</tr>
</tbody>
</table>
Air Tightness

• Requirement: < 0.6 ACH@50
• What does this mean?
 – @50 refers to 50 pascals pressure difference between indoors and out during a blower door test, ≈ 20mph wind on all sides of house
 – 0.6 ACH50 = 5 times tighter than ENERGY STAR®
• Method A and Method B Testing
 – A: Configures building to operation during the heating and cooling seasons
 – B: Any intentional openings in the building envelope are sealed
Blower Door Testing

- Basic Components
 - Gauge (manometer)
 - Shroud
 - Frame
 - Fan
DESIGN PHASE
PH Design Phase Process

Schematic Design: 1-2 months
- Feasibility Analysis & Recommendations – several iterations

100 % DD: 3-6 months
- Pre-Construction Energy Calculations – 1st detailed model

50% CD: 2-3 months
- Update Model & Start THERM Modeling
- Air Barrier Review, QA/QC Checklists & Blower Door Test Plan

100% CD:
- Pre-Construction Energy Calculations & THERM Modeling
- Update Air Barrier Review, QA/QC Checklists & Blower Door Test Plan
- Pre-Certification Submittal to Certifying Body
PH Design Phase

Task Table

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design, Approvals, Construction</td>
<td>976 days</td>
<td>Mon 8/15/16</td>
<td>Fri 8/26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Concept Design</td>
<td>20 days</td>
<td>Mon 8/15/16</td>
<td>Mon 9/12/16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Concept Design Review</td>
<td>1 day</td>
<td>Tue 9/13/16</td>
<td>Tue 9/13/16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Preliminary Schematic Design</td>
<td>20 days</td>
<td>Tue 9/13/16</td>
<td>Mon 9/19/16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Preliminary Schematic Design Review</td>
<td>1 day</td>
<td>Tue 9/13/16</td>
<td>Tue 9/13/16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Final Schematic Design</td>
<td>20 days</td>
<td>Wed 10/12/16</td>
<td>Wed 10/12/16</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Final Schematic Design Review</td>
<td>1 day</td>
<td>Wed 11/8/16</td>
<td>Wed 11/8/16</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Preliminary Design Development</td>
<td>30 days</td>
<td>Thu 11/15/16</td>
<td>Thu 11/15/16</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Preliminary Design Development Review</td>
<td>1 day</td>
<td>Thu 11/15/16</td>
<td>Thu 11/15/16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Final Design Development</td>
<td>30 days</td>
<td>Fri 12/12/16</td>
<td>Fri 12/12/16</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Owner Review and Approval of Final DD Drawings</td>
<td>3 days</td>
<td>Fri 12/17/16</td>
<td>Fri 12/17/16</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Final Construction Documentation Set</td>
<td>120 days</td>
<td>Wed 2/8/17</td>
<td>Wed 2/8/17</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Submit drawings to DOB for approval</td>
<td>5 days</td>
<td>Wed 2/8/17</td>
<td>Wed 2/14/17</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DOM Review & Approval</td>
<td>30 days</td>
<td>Wed 2/15/17</td>
<td>Wed 2/15/17</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Issue RFP for GC Bid</td>
<td>2 days</td>
<td>Wed 2/17/17</td>
<td>Wed 2/17/17</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>GC Estimating & Bid Submission</td>
<td>20 days</td>
<td>Fri 2/17/17</td>
<td>Fri 2/17/17</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Bid Review & Negotiation</td>
<td>40 days</td>
<td>Thu 3/2/17</td>
<td>Thu 3/2/17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Final COA Review and Approval</td>
<td>5 days</td>
<td>Wed 3/7/17</td>
<td>Wed 3/7/17</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Award of COA & Letter of Intent</td>
<td>5 days</td>
<td>Wed 3/14/17</td>
<td>Wed 3/14/17</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Construction</td>
<td>650 days</td>
<td>Wed 8/9/17</td>
<td>Wed 8/9/17</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Inspections, Punch List & Occupancy</td>
<td>70 days</td>
<td>Fri 3/9/17</td>
<td>Fri 3/9/17</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Final Sub-CA and Final Certificate of Occupancy</td>
<td>30 days</td>
<td>Mon 3/27/17</td>
<td>Mon 3/27/17</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Leasing and Marketing</td>
<td>323 days</td>
<td>Wed 7/11/18</td>
<td>Wed 10/2/19</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Complete Model Apartment</td>
<td>40 days</td>
<td>Wed 7/11/18</td>
<td>Wed 7/11/18</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Stage 1 Prew Model Apartment</td>
<td>5 days</td>
<td>Wed 8/2/19</td>
<td>Wed 8/2/19</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Model Apartment</td>
<td>105 days</td>
<td>Wed 8/2/19</td>
<td>Wed 8/2/19</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **Legend:**
 - Passive House Services

- Milestones:
 - Final testing & ventilation on mechanical ventilation system
 - Whole building door test
 - SWA will be present up to 3 mockups of critical junction

- Events:
 - Combined training: 1. Review details with construction team during one-hour training session. 2. One-on-one review with stakeholders to explain the air-tightness concept.
 - SWA: Site Inspections to verify thermal integrity construction and air-tightness.

- Notes:
 - 100S DD: Pre-construction Energy Calculations (PHEP)
 - DH: Detailed Door reviews of building assemblies, identify construction and assembly details that may be potential sources of air leakage
 - 100S OA: Update PHPP; Detailed Door reviews of building assemblies, identify construction and assembly details that may be potential sources of air leakage
Continuous Insulation & Air Barrier

1. Roof slab
2. Interior Gyp on Exterior Walls
3. Foundation Slab
Air Barrier Details

• Air barrier continuity
 – High attention to the details

• Insulation continuity
 – Thermal bridge mitigation
QA/QC Checklists

Verification Item #1:
Insulation inspection on 24th floor

Description of Verified Item #1:
SWA inspected the 24th floor insulation installation. Minor issues were found and immediately repaired by Eastern.

Action Required:
None.

Reinspection Required?
Check

Item 1 - Photo 1

Item 1 - Photo Caption
24th floor insulation installation.
CONSTRUCTION PHASE QA/QC
PH Contractor Buy-In

• General contractor and subcontractor buy-in is critical to project success
• All trades have an impact on project results and may require a mind shift on performance testing
• Passive House Tradesperson training mandatory for key personnel
• GC needs at least two people who will be dedicated to PH scope and coordination
PH Contractor Buy-In

• Ensure GC and trades fully understand what’s included in respective work scopes

• Discuss expectations with whole project team during bidding phase
Verification for Large Projects

- Foundations
 - Abutting neighbor(s)
 - Staging of foundation
 - Under slab / stem walls
- Above Grade Walls
 - Wall construction type: CMU, wood framed, etc.
 - Sequencing for hoistways, upper vs. lower floors
- Roof
 - Thermal breaks and roof membrane penetrations
 - Bulkheads, louvers & dampers
Testing Tools and Protocols

- Window mockup testing
- Guarded blower door testing
- Envelope compartmentalization and window testing
- Unique component testing
- Whole building blower door test
CASE STUDIES
CORNELL TECH CAMPUS
Tallest Passive House Project in the World
352 units
Roosevelt Island, NY
Redline Plan & Section
Air and vapor barrier must be addressed at this location.

Insulation void in concrete block. Area must be insulated.
Identify Sequencing & Timing of Inspections

Panel Inspection Time Line

- Truck Arrives to Site
- Panel on Hook
- Panel on Building
- MAINT and FABIAN to do visual inspection of load and full panel numbers if accessible
- MAINT and FABIAN to assess condition of exterior of panel/frames and note on any deficiencies on a floor plan
- MAINT and FABIAN to assess condition of interior of panel/frames and note on any deficiencies on a floor plan
- BU Reforms Inspection
- EWS Confirms Floor Adjustment Complete
- EWS Confirms Inello Wrapping Complete
- INTELLO Wrapping in Progress
- EWS Confirms Inello Wrapping Complete
- EWS Confirms Fire Safty Complete
- EWS Confirms Fire Safty Complete
- SWA Inspects Right before sheetrock installed
- Steel stud tracks and electrical conduits, etc installed
- SWA COMMENTS IN BLUE

How much time does it take between each stage?
Develop Contractor Checklists
Wall Panels
Automated Inspection Checklists

• Large projects w/ multiple dwellings
• Repetitive tasks – duct & unit by unit leakage testing
• Insulation inspections
<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2nd Floor Slab Edge Insulation: Refer to architectural details 20 A-356.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detail 20 shows 4” thick insulation at the slab edge between the CUP and the Residential Tower extending 2” above and below the slab (highlighted area in detail at right).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This condition exits at the area highlighted on the plan to the right.</td>
<td></td>
</tr>
</tbody>
</table>
Issues Log

<table>
<thead>
<tr>
<th>SVR #</th>
<th>SVR Item</th>
<th>SVR Type</th>
<th>Location</th>
<th>Issue</th>
<th>Action Required</th>
<th>Responsible Party</th>
<th>Reinspection Required</th>
<th>Actions Taken/Updates</th>
<th>Date Verified/Update</th>
<th>Open/Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>ENV</td>
<td>7th Floor</td>
<td>Panel Insulation at Joints: Insulation at the panel joints was found to be around 6 inches deep. Stop drawings indicate 9" (EEWS Shop Drawings Sheet 501, Detail 1, second image right). SWA notified Monadnock of the issue. Monadnock followed up with a philla on 5/11/16 and informed SWA that EEWS will continue to install insulation at 9 inch depth. All panels below the six floor will need to be inspected for insufficient insulation and corrected if needed via exterior scaffolding when exterior caulk is applied.</td>
<td>Photo documentation using a measuring device will be required to verify PH compliance. SWA & EEWS to agree on frequency of photos and method of depth verification.</td>
<td>Eastern</td>
<td>Y</td>
<td>On 6/22/16, Eastern issued photos of joint insulation being installed along two stage areas (Rig 3 Drop 2 and Rig 3 Drop 4). SWA will continue keeping track of Eastern's progress.</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>ENV</td>
<td>2nd Floor</td>
<td>Gap at the corner of storage room and condenser porch located behind the column is not air sealed at this time. Neither is the connection of intesana to block. SWA to inspect when complete.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Open</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>HVAC</td>
<td>All Floors</td>
<td>Damaged Ductwork Covers: SWA observed numerous instances of damaged ductwork opening covers damaged or loose throughout the first and second floors. SWA believes a significant amount of dust has likely accumulated in the ductwork. The project is now at risk of losing a LEED point needed for LEED Platinum certification.</td>
<td>Monadnock to make sure that all ductwork openings have been covered on floors 1, 2, 15-25. Monadnock to issue written confirmation to SWA once this work has been complete. SWA to spot check these areas in its next visit.</td>
<td>SWA</td>
<td>Y</td>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>4</td>
<td>ENV</td>
<td>2nd Floor</td>
<td>Insulation under 2nd floor condensor porch ballast was covered. SWA could impact. Images showing insulation depth and coverage must be provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Open</td>
</tr>
<tr>
<td>19/4</td>
<td>4</td>
<td>ENV</td>
<td>2nd Floor</td>
<td>Roof deck insulation inside AHU curb was covered before SWA could inspect. Images showing insulation depth and coverage must be provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
</tr>
<tr>
<td>1/4</td>
<td>5</td>
<td>ENV</td>
<td>3rd & 27th Floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Closed</td>
</tr>
</tbody>
</table>
Interim Testing

• Original plan – no whole floor testing
• Revised plan – guarded testing on 4th, 5th and 6th floors
• Window & Door Leakage
• Façade Leakage
• Compartmentalization
Guarded Testing

Red line indicates area that needs to be sealed off. Barrier needs to be taped to ceiling, walls and floors for the entire length as well as overlapping seams.

Blower Door Location -
Temporary Air Barrier
Blower Doors on 3 Floors
Other Tests

• Condenser porch doors
• Trash chute rooms / doors
Progress

- Blower door test completed – 6/3/2017
- 0.13 ACH50 (more than 4x less than 0.6)
- ERVs commissioning completed
- Students moved in August 1, 2017
- PH Certification received on October 17, 2017!!!
ST. JOHN NEUMANN PLACE
SENIOR HOUSING - 52 DWELLINGS
PHILADELPHIA, PA
Air Barrier System - Indicated with red line:
- Roof membrane overlaps top of wall and is sealed to exterior face of structural sheathing.
- Wall structural sheathing is taped at all joints and transitions with sheathing manufacturer's recommended tape.
- Sill edge is sealed to exterior face of structural sheathing and storefront with ZIP tape or similar.
Drill Into Details
Verify On Site
Site Visit Reports

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description and Action Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9" of OCSP needs to be sprayed on the ceiling of the canopy which is currently un-reachable due to the structural steel of the canopy. This may require temporary removal of the already installed exterior sheathing. After the sheathing is re-attached, OCSF needs to be applied to the interior of it. The condition needs to match Detail 1 on A6.3 shown below.</td>
</tr>
</tbody>
</table>

Images:

[Images showing the site visit details]
Interim Testing

- Insulation
- Original plan – whole building testing
- Revised plan – window/unitized testing
- Window Leakage
- Façade Leakage
- Heat / cool duct testing
Façade Leakage Measurements: Qualitative
Progress

• Blower door test did not passed – no interim whole building blower door or guarded test performed
• Two follow up visits to try and reduce infiltration - $$$
• ERVs balancing a challenge at low flows
• MEP installed exhaust only systems in some locations
• Did not receive certification
Wall Inspections

• ICF doesn’t require as many inspections for insulation and air barrier
1st Window Mockup
2nd Window Mockup
Window Testing w/ Blower Door
1ˢᵗ Window Mockup – Different ICF Project
Further Window Mockups – Different ICF Project
Progress at Beach Green

- AeroBarrier by Aeroseal was utilized
- Envelope leakage test performed 6/24/2017 – couldn’t finish, Building Department shut down site for working on Saturday
- Infiltration test for model scheduled for 7/6/2017 – passed!!
- ERV testing & commissioning completed
- Documentation submitted to certifier and is in review
Whole Building Test Logistics

• Enough fans, cruise manometers, frames, shrouds, tubing, CAT5 cabling?
• Is building access limited to avoid people opening and closing doors, windows, etc.?
• Thorough walkthrough the day prior to test date to confirm prep has taken place?
• GC and appropriate subs on site to help with building prep and issues that come up on the test day?
• Saturday work permits pulled?
Blower Door Test Plan
Blower Door Test Conditions

Key: HVAC Contractor, Plumber, GC / Builder

<table>
<thead>
<tr>
<th>Intentional Opening</th>
<th>Test Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows, doors, skylights in the building enclosure</td>
<td>Closed and latched</td>
<td></td>
</tr>
<tr>
<td>Doors and operable window inside the test enclosure</td>
<td>Open</td>
<td>Use stairways to connect all zones of the building</td>
</tr>
<tr>
<td>Fire dampers</td>
<td>Remain as found</td>
<td></td>
</tr>
<tr>
<td>Dryer doors</td>
<td>Closed and latched</td>
<td></td>
</tr>
<tr>
<td>Gas meter room</td>
<td>Door to gas meter room closed and weather stripped</td>
<td></td>
</tr>
<tr>
<td>Waste handling system</td>
<td>Trash chute termination at roof taped off. Door to trash rooms closed.</td>
<td></td>
</tr>
<tr>
<td>ERVs (apartments)</td>
<td>Fan off, any dampers closed. Ducts to the outside sealed inside the ERV cabinet in each apartment.</td>
<td>Ventilation is continuous, so can remain taped off</td>
</tr>
<tr>
<td>Motorized dampers: ERV-4 (cellar)</td>
<td>Fan off, dampers closed. Taped off from the exterior</td>
<td>Ventilation is continuous, so dampers closed and sealed off</td>
</tr>
<tr>
<td>Motorized dampers: ERV-5 (1st floor)</td>
<td>Fan off, dampers closed. Taped off from the exterior</td>
<td>Ventilation is continuous, so dampers closed and sealed off</td>
</tr>
<tr>
<td>Motorized dampers: ERV-2A (1st floor)</td>
<td>Fan off, dampers closed. Taped off from the exterior</td>
<td>Ventilation is continuous, so dampers closed and sealed off</td>
</tr>
<tr>
<td>Motorized damper: Laundry Room (2nd floor)</td>
<td>Fan off, dampers closed. Taped off from the exterior</td>
<td>Untaped for Method A test</td>
</tr>
<tr>
<td>Motorized damper: ERV-2 (2nd floor)</td>
<td>Fan off, dampers closed. Taped off from the exterior</td>
<td>Ventilation is continuous, so dampers closed and sealed</td>
</tr>
<tr>
<td>Motorized dampers: EMR (1st floor), Stair A, Star B, Elevator, Boiler Room (roof)</td>
<td>Taped off from the exterior</td>
<td>Untaped for Method A test</td>
</tr>
<tr>
<td>ERV 3 (no 3)</td>
<td>Fan off, dampers closed</td>
<td>Ventilation is continuous, so</td>
</tr>
</tbody>
</table>

Whole Building Infiltration Testing Plan to Determine Compliance with PHIUS+ Airtightness Requirements at Saint John Neumann
MAY 8, 2017
UPDATED JUNE 22, 2017
ERVs & Blower Door

- Need to seal off ERVs for final test
- Can’t seal off vents from outside for individual ERVs
- Tape off both outdoor connection ports inside every ERV
- Wrap rooftop ERVs
Whole Building Test Logistics

• A great resource is **Blower Door Applications Guide: Beyond Single Family Residential** PDF (Brennan, Clarkin, Nelson, Olson, Morin)
Logistics
RECOMMENDATIONS FOR SUCCESS
Do This

• Mockups
• Guarded testing
• Panelized construction if budget allows
• Insist on training for construction staff
• Make typical details readily available on site for all subs
• Use schedules in the plans to call out air barrier materials
Do NOT Do This

- Assume if the CM has done a PH project that the 2nd will automatically pass
- Keep going without passing the window mockup
- Depend on subs reading the specifications
- Allow the CM to exclude meeting PH requirements from the contract
- Ignore your PH Consultant!!!!!
Questions?
modonnell@swinter.com
spusey@swinter.com

THANK YOU!