Green Gauges

A design methodology at Williams College

At the conclusion of this session, participants will be able to:

- understand the value of systems thinking and early design communication
- calculate and compare <u>operational</u> carbon benefits of specific design strategies
- define and contrast site energy and source energy and CO2 equivalent greenhouse gas emissions
- critique the Green Gauges approach based on their own experience

Schedule:

10 min Amy Introduction and Goals

5 min Tom Looking back- past projects

10 min Amy/Tom Green Gauges framework

10 min Tom Current projects

15 min Andy What's next? site EUI vs source? eCO2 per sf...

10 min Questions and Discussion

Williams College

- Founded 1793
- 2000 undergraduates
- 110 buildings
- \$2 billion endowment
- First GHG reduction goals in 2007
- Additional goals in 2010

Williams College Emissions by Scope

High performance buildings are important – but what are we getting for our investment?

Historical & Future Building Standards

What to measure?

- Incremental cost of high performance What's the baseline?
- Benefit: carbon reduction Site? Source? Lifetime? Annual?
- Benefit: Energy cost savings See abov
- Benefit: Operational cost savings
- See above what's the baseline?
- Then combine somehow into a unified metric!

Annual carbon/incremental cost? Lifetime carbon/incremental cost? Net present value/incremental cost? ?????

• Easy, right?

Fun, though.

09 March 2018

Green Gauges

Net present value of a variety of emissions reduction measures, including the social cost of carbon

09 March 2018

09 March 2018

Green Gauges

09 March 2018

Biophilic moment- all photos courtesy of Ethan Drinker Photography

In the context of carbon reductions,

three questions are being asked:

- 1. What specifically is the College doing?
- 2. What does it cost?
- 3. What are the savings?

We were asked to:

develop a methodology to track this effort in new projects and retroactively evaluate past projects

The effort has been named Green Gauges:

gauge $|g\bar{a}j|$ - an instrument or device for measuring the magnitude, amount, or contents of something, typically with a visual display of such information

What is Green Gauges and Why?

Measure #	Measure Name	kWh	Therms	Steam MMBtu	Utility Energy Cost (\$)	Incremental Savings (\$)	Increm %	Cumulative Savings (\$)	Cum.%
Base	Baseline Design (0.4 CFM/SF infiltration)	309,843	620	994	66,048				
1	Base + Energy recovery units + fin-tube	374,837	626	458	58,590	7,458	11.3%	7,458	11%
2	1 + R-40 exterior walls	375,706	626	397	56,960	1,629	2.5%	9,088	14%
3	2 + R-60 roof	377,136	626	350	55,801	1,159	1.8%	10,247	16%
4	3 + R-20 below-grade walls	379,003	626	338	55,671	130	0.2%	10,377	16%
5	4 + R-10 under-slab insulation	380,099	626	332	55,623	48	0.1%	10,425	16%
6	5 + Improved Fenestration	379,855	626	258	53,497	2,126	3.2%	12,551	19%
7	6 + Reducing infiltration to 0.25 CFM/SF	383,741	626	238	53,397	100	0.2%	12,651	19%
8	7 + Reducing infiltration to 0.11 CFM/SF	387,433	626	227	53,509	(112)	-0.2%	12,539	19%
9	8 + Exterior Lighting	378,822	626	227	52,485	1,024	1.9%	13,563	21%
10	9 + Reduced LPD	299,180	626	248	43,624	8,862	16.9%	22,425	34%
11	10 + Occupancy sensors	296,341	626	249	43,312	311	0.7%	22,736	34%
12	11 + Daylighting controls	295,811	626	249	43,249	63	0.1%	22,799	35%
13	12 + DHW Heater	295,811	516	249	43,079	170	0.4%	22,969	35%
14	13 + Low flow fixtures	295,811	273	196	41,189	1,891	4.4%	24,860	38%
15	14 + ES washer & dishwasher DHW savings	295,811	273	196	41,189	-	0.0%	24,860	38%
16	15 + Pump VFD	291,218	273	204	40,874	314	0.8%	25,174	38%
17	16 + ERU VAV	291,130	273	204	40,866	8	0.0%	25,182	38%
18	17 + ERU-2 DCV	255,797	273	196	36,435	4,431	10.8%	29,613	45%
19	18 + Thermostat OS	255,673	273	191	36,275	160	0.4%	29,773	45%
20	19 + Window Shades	252,491	273	180	35,584	691	2%	30,465	46%
21	20 + Removing Cooling	219,594	272	177	31,581	4,003	11%	34,468	52%
22	21 + Roof Solar Panels (116.4 MWh annually)	103,188	272	177	17,728	13,853	44%	48,320	73%

Horn Hall-

designed by Centerline Architects, analysis by Karpman Associates

Past Projects- Typical Energy Conservation Measures (ECM)

The Log

Construction - Occupancy 2015

.

Total Project Cost

\$4,500,000

Area (square feet)

7,890 Modeled Annual Energy Savings from Existing Baseline (185,000 kWh per year)

		% Total		% Base	Ву	
Strategy	Cost	Project	kWh saved	Total	Component	Comments
Additional Design	\$35,000	0.8%	_	0		MEP, Energy Consultant, Arch- blower door testing, LEED evaluation, but not Certified
Enhanced Commissioning	\$7,200	0.2%	-	0		
Enhanced Envelope	\$75,000	1.7%	50,000	27%		Triple glazed windows, exterior insulation, air tightness
Photovoltaic Panels	\$79,390	1.8%	18,000	10%		
Upgrade Equipment	\$10,000	0.2%	4,000	2%		Modulating Kitchen Hood and Efficient Coolers
HVAC	\$75,000	1.7%	30,000	16%		ERV and VFD's multiple zones
Total	\$281,590	6.3%				EUI 69 kbtu/sf/year (NIC pv)

Note: Saving on **existing consumption**- NOT CODE

Designed by c&h architects, analysis by Energy Balance

Past Projects- Pulling out data afterwards

December 2016

Project	Baseline modeling standard	% better than baseline	% better than Stretch code	Energy Use Intensity (EUI) Kbtu/sf/year Not including pv			
				DESIGN	BASELINE		
Williams Inn	Appendix G- 2013 Appendix G- 2007	26% 37%	16% (new code)	60 Design	95 Weighted CBECS 109 Existing Inn		
CDE Residence Hall	N/A as not LEED after schematic			23 Design 20 with EEM1 + EEM2			
Science Center- South	Appendix G- 2007	31.6%	11.6% (old code)	138 Design	227 Baseline		
Science Center- North	Appendix G- 2007	25%	5% (old code)	89 Design	120 Baseline		
Williams Bookstore	Appendix G- 2007	41%	21%	39 Design	66 Baseline		
Horn Hall	Appendix G- 2007 With modifications	52%	32%	30 Design	73 Baseline		
Weston Hall	Appendix G- 2007	18%		44 Design	61 Baseline		
The Log	Exempt	34%	N/A	75 Design	119 Existing and unoccupied.		
Weston Field	Appendix G- 2007	38.9%	18.9%	68 Design	115 Baseline		
Kellogg				19 Design			

- Appendix G is the Building Performance Rating Method of ASHRAE Standard 90.1.
- The past stretch code required commercial building over 100,000 sf to be 20% better than the 2007 version of Appendix G.A building between 5,000 and 100,000 sf may either be 20% better than Appendix G, or comply with the prescriptive requirements of the code.
- The new stretch code (effective Jan 1, 2017) requires 100,000 sf buildings to be 10% better than Appendix G- 2013 (which is more stringent than 2007). Smaller buildings must comply with the International Energy Conservation Code (IECC) 2015 or ASHRAE 90.1.
- LEED V3 requires all new buildings to be 10% better than the equivalent Appendix G-2007 building on a cost of energy basis.
- CBECS is the U.S. Energy Information Administration's Commercial Buildings Energy Consumption Survey.

Project EUI summary sheet

Green Gauges

EUI Reductions (kBtu/sf)

Project EUI- Code verses design

Key Green Gauges deliverables from the design team

10% Schematic Design – Goals and Feasibility are established (A).

Energy metrics and comparisons.

30% Schematic Design-Systems & Metering Narrative (B)

Simple descriptions of various design elements.

25% Design Development-

Updated Narratives & Value Assessments (C)

Cost, energy savings, and carbon reduction.

70% Design Development-

Metering Diagram(D)

Show the components of multiple systems in one diagram.

Then follow up during and after Construction (E & F).

Most decisions are made in Schematic Design

GREEN GAUGES

Diagram - Schematic

BE 2018

09 March 2018

Biophilic moment

What is the BASELINE and What is the GOAL?

BASELINE

Peer group Baseline is LEED Silver (not energy specific) Energy Baseline is MA Stretch Code

GOAL

LEED GOLD or better

15-20% better than the Stretch Code (now IECC – 2015) Stated goal- 35% campus wide carbon emission reduction of 1990 levels by 2020

ENERGY USE INTENSITY or EUI

The total amount of energy used in the course of a year expressed in kbtu/sf.

For either source or site energy.

at Williams, this value is NOT offset by renewables

Goals and Feasibility (EUI)- Appendix A

(EUI)- as reported by LBC, not 2030 Challenge

Green Gauges

09 March 2018

WILLIAMS INN SCHEMATIC DESIGN | BENCHMARKING | BENCHMARKS AND TARGETS

BENCHMARK TARGETS

BE 2018

EUI BENCHMARKING EXISTING WILLIAMS INN, MEDIANS AND CURRENT TARGET

These graphs show how the Benchmarking Analysis described on the previous pages compares against other industry values.

The source of information for the existing Williams Inn in based on 2013 Utilities provided by Williams College.

The Benchmarking analysis shows that the current target of 60 kbtu/sf for the project is roughly 45% better than the existing lnn and about 37% better than existing buildings of comparable program.

For comparison, LEED and Architecture 2030 Targets are also shown. Since LEED uses energy costs instead of EUI, some approximation is necessary to provide a comparable target. Since LEED does not have a specific energy target, what is shown is the likely range of energy performance that will be required in order to achieve the desired level of LEED Gold (using the 2009 version of the Rating System).

Architecture 2030 uses the CBECS baseline and seeks to achieve Carbon Neutral design relative to 2003 CBECS data by the year 2030 though increasing savings year over year. The current goal is 70% reduction, or an EUI of approximately 29 relative to the program-weighted EUI.

The above Benchmarking exercise therefore suggests that the current target of 60 kbtu/sf represents a moderately aggressive, yet realistic target.

In addition to the EUI target and LEED Gold, the project is also required to meet the MA Stretch Energy Code.

The next sections of the report outlines strategies to achieve these targets.

EUI BENCHMARKING COMPARISON, LEED GOLD AND ARCHITECTURE 2030

Williams Inn- Energy Use Intensity- EXAMPLE

Designed by Cambridge Seven, Analysis by WSP

Williams Inn- Energy Use Intensity- EXAMPLE

Designed by Cambridge Seven, Analysis by WSP

A simple narrative that is organized to communicate with all members of the Project team.

- B1 Site
- B2 Envelope
- B3 Mechanical, Electrical & Plumbing
- B4 Indoor Air Quality
- B5 Passive Strategies
- B6 Resilient Strategies
- B7 Water
- B8 Generation & Offsets
- B9 Occupant engagement
- B10 Monitoring

To be reviewed and approved with the Owner at 30% of Schematic Design **before** the design is fully documented.

A consistent format for Project Managers working with numerous design teams. If an integrated design process, this is easy.

B2- Envelope	System Description	Pros / Cons	Target / Goal	Owner Review & Comments
Sub-Slab	2" XPS Foam Board continuous beneath slab.	Adequate, continuous sub-slab insulation and air/moisture control provides thermal stability, moisture mitigation, reduced heat loss. Areas of discontinuity can provide regions for condensation, mold formation.	Reduce heatloss through foundation walls and condensation at slab. Continuous sub- slab insulation. Consider R-15 to R-20 for Net Zero Projects	
Foundation	4" XPS continuous foam board in ground contact to exterior of poured concrete foundation walls. AAC block grade where insulation ends.	Continuous insulation at the foundation – whether inside or outside – provides thermal comfort. Air control and moisture control below grade are critical to maintaining internal comfort throughout building. basement. Some ground-contact foam products have high Global Warming Potential – subtracting from the climate-benefits their insulation provides.	Durable, low-impact insulation continuous to the exterior of the foundation to R-20.	
Walls - Wood	Insulation: 2x8 Walls with batt insulation, 4" Rigid Insulation outboard of sheathing. Outline spec indicates wall insulation to be mineral fiber and rigid insulation to be rock- wool-fiber. Air Sealing: Continuous and verified air barrier assembly.	Insulation: Batt insulation affordable but difficult to install to Grade I standards. Outboard insulation is good strategy for protection of structural members and sheathing. Air Sealing: Provides thermal comfort, energy savings, and durability by preventing movement of heat and moisture through wall assembly and avoiding future condensation/mold/rot.	Insulation: R-40 wall with continuous insulation to the exterior of structural members. Air Sealing standard: 0.25 cfm75/square foot of shell – all six sides.	
Walls – Masonry	8" CMU. Brick veneer. Insulated to the outside.	Exterior insulation allows for protection of the structural assemblies from hot/cold/wet conditions.	Continuous insulation on all segments of the thermal boundary.	
Walls – Curtain	High performance curtain wall. U-0.2 or lower whole unit value specified.	Low U-value windows typically provide greater energy savings, higher thermal comfort, esp. in spaces dominated by curtain wall assemblies. Prices typically higher than lower performance units.	Avoid cold spots, uncomfortable spaces	
Windows / Doors	Doors: U-0.24 Exterior Doors specified. Windows: Single hung, triple-glazed wood clad windows with multi-layer low-E coating and Argon fill	Low U-value windows provide greater thermal comfort, energy savings. Prices typically higher than double glazed units.	U-0.2 or better all windows.	
Roof	Insulation: 4" Batt insulation in attic floor. 8" rigid insulation at underside of roof sheathing. Air Sealing: Continuous, verifiable air barrier assembly.	High R-value roof will reduce energy losses in winter (and gains in summer). Carefully detailed air sealing prevents migration of warm moist air into assemblies during winter, preventing condensation, protecting structure.	R-50 or better. All mechanicals fully within insulated space. Air Sealing standard: 0.25 cfm75/square foot of shell – all six sides.	
Air-Tightness	Continuous, verifiable air barrier assembly, traceable from roof to basement. Testing protocols established early. Full-scale mockup provided and tested with fog.	Careful detailing and established testing protocols provide for low heat loss and high durability in low-infiltration buidings. Testing of mockup can diagnose possible issues in construction sequence.	0.25cfm75/shell square foot, all six sides	

Designed by Atelier Ten for PBDW, documented by c&h

Systems and Metering Narrative - Appendix B- EXAMPLE

B2-Envelope	System Description	Pros / Cons
Sub-Slab	2" XPS Foam Board continuous beneath slab.	Adequate, continuous sub-slab insulation and air/moisture control provides thermal stability, moisture mitigation, reduced heat loss. Areas of discontinuity can provide regions for condensation, mold formation.
Foundation	4" XPS continuous foam board in ground contact to exterior of poured concrete foundation walls. AAC block grade where insulation ends.	Continuous insulation at the foundation – whether inside or outside – provides thermal comfort. Air control and moisture control below grade are critical to maintaining internal comfort throughout building. basement. Some ground-contact foam products have high Global Warming Potential – subtracting from the climate-benefits their insulation provides.
Walls - Wood	Insulation: 2x8 Walls with batt insulation, 4" Rigid Insulation outboard of sheathing. Outline spec indicates wall insulation to be mineral fiber and rigid insulation to be rock- wool-fiber. Air Sealing: Continuous and verified air barrier assembly.	Insulation: Batt insulation affordable but difficult to install to Grade I standards. Outboard insulation is good strategy for protection of structural members and sheathing. Air Sealing: Provides thermal comfort, energy savings, and durability by preventing movement of heat and moisture through wall assembly and avoiding future condensation/mold/rot.

Designed by Atelier Ten for PBDW, documented by c&h

Systems and Metering Narrative - Appendix B- EXAMPLE

	SUSTAINABLE STR	RATEGIES: MEP (MECHANIC	AL, ELECTRICAL, PLUMBING)	
SYSTEM	DESCRIPTION	PROS/CONS	MEASURED BENEFITS	
	Option #1: Campus Steam	(+) no site fossil fuel (-) higher EUI	Utilizes existing heating source	
HEATING	Option #2: Air Source VRF Heat Pump with supplemental steam heating	 (+) no site fossil fuel – could be offset by PV/GEC (+) lower EUI (-) requires supplemental heat for extreme cold 	Reduced EUI and reduce Carbon footprint when coupled with PV/GECs	
COOLING	Option #1: Air Cooled Chiller	(+) High Efficiency (-) High First Cost	Less equipment to support AC.	
COOLING	Option #2: Air Source VRF Heat Pump	(+) High Efficiency (-) Distributed refrigerant	Reduced EUI and reduce Carbon footprint when coupled with PV/GECs	
	Energy Recovery Units (ERUs)	(+) Provide Code required ventilation(-) Space in existing building for ductwork(-) High First Cost	Comfort Air Quality Reduce Energy	
VENTILATION	Occupancy Based Control	(+) High Efficiency		
VENTILATION	Single room recovery ventilation unit	(+) Low energy (+) Eliminate the need for ductwork		
	Operable windows (see passive section)			
FILTRATION	MERV 13 Filters in ERUs Comply with LEED	(+) Air Quality (-) Fan Power (-) Filter Cost	Air Quality	

Designed by Centerline Architects

System		First Cost	Operating Cost	Source EUI*	Architectural Requirements	Thermostats	notes
Heating Only	Hot-Water Radiant Panels	\$\$\$	Low	Medium	Basement Mechanical Room; Recessed Ceiling Panels	Individual Control	Horn Hall is designed with this off campus steam plant – primary campus standard
	Air-Source Heat Pumps	\$\$	Medium	Low	Mechanical Closets with Ducting	Shared Control	
	Electric Baseboard	\$	High	Medium	Recessed Wall or Ceiling Panels	Individual Control	
	VRF Heat Pumps	\$\$	Medium	Medium	Mechanical Closets with Ducting	Shared Control	Installed at Kellogg Center
Heating & Cooling	Ground Source Heat Pumps (Water-to-Air)	\$\$\$	Low	Low	Mechanical Closets with Ducting	Shared Control	
Cooling	Ground Source Heat Pumps (Water-to-Water)	\$\$\$(\$)	Low	Low	Mechanical Room; Recessed Terminal Units	Individual Control	Current design for the CDE
Domestic Hot	Natural Gas	\$\$	Medium	Medium	Mechanical Room	N/A	
Water	Air-Source Heat Pump	\$\$	Medium	Medium	Mechanical Room	N/A	

*Source EUI:

In comparing the projected energy performance of the Garfield House to other new construction at Williams College, it is important to make an apples to apple comparison of heating energy sources. Buildings such as Horn Hall rely on district steam, so the efficiency of the district heating plant must be taken into consideration when comparing it to the efficiency of Garfield's proposed heating systems (local boilers, etc.).

Designed by SGA, Vanderweil and Thorton Tomasetti

Systems and Metering Narrative - Appendix B- EXAMPLE

BE 2018

09 March 2018

Biophilic moment

Green Gauges

	Strategies for Assessment	Incremental Cost of	Energy Savings	Avoided carbon Metric Tons-	System life (years)	\$/Metric Ton of	Comments
	(ref Appendix B)	Measure over Baseline	(units per fuel type- not \$)	eCO2		eCO2 per year over	
		(\$ initial cost)	over Baseline			the system	
C1- Site							
C2- Envelope							
C3- Mechanical							
C3- Electrical C3- Plumbing							
C4- Materials & IAQ							
C5- Passive Strategies							
C6- Resilient Design							
C7- Water							
C8- Generation							
C8- Offsets							
C9- Occupant Engagement							
C10- Metering							

Value Assessment- Appendix C
	SCIENCE CENTER SOUTH	-	incremental costs from Nat. Grid study	KWH savings	Equ. Carbon avoided in metric tons		THERMS savings	Equ. Carbon avoided in metric tons	Total metric tons avoided eCO2		cost per avoided metric ton	System Life	cost per metric ton	of eCO2 avoided over system life
C2	Envelope Enhancements	\$	33,204	17,726	5.9		6,297	33.3	39.3		\$ 846	40	\$	21
C3	High Efficiency Lighting	\$	38,785	137,486	45.9	-	3,561	-18.9	27.0		\$ 1,435	20	\$	72
C3	Enhanced Lighting controls	\$	122,707	22,755	7.6	-	223	-1.2	6.4		\$ 19,136	10	\$1	,914
C3	Chilled beams at offices	\$	29,700	- 15,590	-5.2		2,857	15.1	9.9		\$ 2,993	25	\$	120
C3	Lab exhaust enhancements	\$	226,039	103,282	34.5		96,122	508.9	543.4		\$ 416	25	\$	17
C8	Photovoltaics (147.9 kv 123.6	\$	494,500	148,350	49.5		-	0.0	49.5	TOTAL 675.5	\$ 9,990	20	\$	499

Value Assessment- Appendix C- EXAMPLE

Data by Payette- analysis to cost/aCO2e/year by c&h Carbon equivalent values from Clean Air Cool planet

ECM #5: Exhaust Air Enhancements

Measure Name	Elec	tric E	Energy Sav	ings and NEE	Bs		Total Cost	Installed Incremental	Simple Pay incer	
	Electr	icity		Natu	ral	Gas	Reduction	Cost	Elec Only	Total
ECM 5	kWh		\$	Therms		\$	\$	\$	years	years
Laboratory Exhaust	103,282	\$	15,161	96,122	\$	117,942	\$133,103	\$226,039	14.9	1.7

Designed by Payette and Vanderweil, analysis by Andelman and Lelek

BE 2018

Green Gauges

09 March 2018

ID	GARFIELD	Incren	nental costs	Savings	metric tons	Savings	metric tons	Total metric tons eCO2	cost pe	r metric ton	System Life	cost per metric ton
		over c	ode	KWH	Equ. Carbon	THERMS	Equ. Carbon					over system life
C2	Passive Haus Envelope	\$	69,800.00	33,980	11.34		0.0	11.3	\$	6,156	50	\$ 123
C3a	DHW- drain water recovery	\$	4,500.00	0	0.00	35	9 1.9	1.9	\$	2,368	50	\$ 47
C3b	LED Lighting	\$	25,000.00	11,679	3.90		0.0	3.9	\$	6,415	20	\$ 321
C3c	Electric heating vs. gas boiler (No cooling)	-\$	71,814.00	- 24,300	-8.11	212	9 11.3	3.2	-\$	22,704	30	\$ (757)

reviewed by TRCH WILLIAMS INN

ID	Measure	Incremer	ntal costs	Savings KWH	metric tons Equ. Carbon	Savings THERMS	metric tons Equ. Carbon	Total metric tons eCO2	cost	per metric ton	System Life	•	metric ton system life
C2	Exterior Envelop upgrades	\$	38,000	-	0.0	3,560	18.8	18.8	\$	2,016	50	\$	40
C3a	Mechanical Upgrades	\$	378,000	-	0.0	14,250	75.4	75.4	\$	5,010	20	\$	251
C3b	Electrical Upgrades	\$	82,000	45,122	15.1		0.0	15.1	\$	5,446	10	\$	545
C3c	High Efficiency DHW	\$	67,000		0.0	2,530	13.4	13.4	\$	5,002	20	\$	250
C8	30 kw pv array	\$	86,000	36,000	12.0	-	0.0	12.0	\$	7,159	20	\$	358

ID	SCIENCE CENTER SOUTH	Incremen From Nat	tal costs . Grid study	Savings KWH	metric tons Equ. Carbon	Savings THERMS	metric tons Equ. Carbon	Total metric tons eCO2	cost	per metric ton	System Life	•	er metric to system life
C2	Envelope Enhancements	\$	33,204	17,726	5.9	6,297	33.3	39.3	\$	846	40	\$	21
C3	High Efficiency Lighting	\$	38,785	137,486	45.9	- 3,561	-18.9	27.0	\$	1,435	20	\$	72
C3	Enhanced Lighting controls	\$	122,707	22,755	7.6	- 223	-1.2	6.4	\$	19,136	10	\$	1,914
C3	Chilled beams at offices	\$	29,700	- 15,590	-5.2	2,857	15.1	9.9	\$	2,993	25	\$	120
C3	Lab exhaust enhancements	\$	226,039	103,282	34.5	96,122	508.9	543.4	\$	416	25	\$	17
C8	Photovoltaics (147.9 kw)	#\$	494,500	148,350) 49.5	-	0.0	49.5	\$	9,990	20	\$	499

	12-Dec-17												
	Input by TRCH from 04 Dec Memo from ARC/R	RFS		calculated per	WC values			1st ye	ear		Lifeti	me	
ID	BOAT HOUSE	Incremental costs	Savings	metric tons	Savings	metric tons	Total metric tons eCO2	cost p	per metric ton	System Life	cost	per metric ton	
		of Measure over baseline	KWH	Equ. Carbon	THERMS	Equ. Carbon							
C2a	Wall insulation U-0.04 vs 0.051	\$ 24,000	5,121	1.7	-	0.0	1.71	\$	14,045	40	\$	351	
C2b	Roof insulation U-0.025 vs 0.032	in above	in above		-								
C2c	Triple pane glazing U 0.24 vs 0.3	\$ 20,000	1,691	0.6	-	0.0	0.56	\$	35,445	20	\$	1,772	
			_										
C3	Heat pumps (over propane boiler)	?		0.0	-	0.0	0.00	#\	VALUE!	20		#VALUE!	
C3	Increase ERV Efficiency	\$ 5,000	1,061	0.4	-	0.0	0.35	\$	14,123	20	\$	706	
C4	LED Lighting	\$ 40,500	8,062	2.7	-	0.0	2.69	\$	15,055	20	\$	753	
C7	PV's 131.98	\$ 527,910	158,373	52.8	-	0.0	52.85	\$	9,990	20	\$	499	
	<mark>1200 kwh pe</mark> r kw	\$4,000											
C8	Network lighting control	\$ 20,250	5,254	1.8	-	0.0	1.75	\$	11,551	20	\$	578	

Value Assessment- Appendix C- more examples

SCIENCE CENTER SOUTH

		Incremental Cost	Total Metric Tons of eCO2 saved per year	System Life	Cost per metric ton over system life
C2	Envelope Enhancements	\$33,204	39.3	40	\$21
C3	High Efficiency Lighting	\$38,785	27.0	20	\$72
C3	Enhanced Lighting Controls	\$122,707	6.4	10	\$1,914
C3	Chilled Beams at Offices	\$29,700	9.9	25	\$120
C3	Lab Exhaust Enhancements	\$226,039	534.4	25	\$17
C8	Photovoltaics- 148 kw @\$3.57 per watt	\$494,500 (PPA)	49.5	20	\$499

BOAT HOUSE

		Incremental Cost	Total Metric Tons of eCO2 saved per year	System Life	Cost per metric ton over system life
C2a	Wall and Roof insulation	\$24,000	1.7	40	\$351
C2b	Triple glazed windows	\$20,000	0.5	20	\$1,772
C3	Heat pumps (over propane boiler)	??			
C3	Increase ERV Efficiency	\$5,000	0.4	20	\$706
C4	LED Lighting	\$40,500	2.7	20	\$753
С7	Photovoltaics- 132 kw @ \$4 per watt	\$527,910 (PPA)	52.8	20	\$499
C8	Network Lighting Control	\$20,250	1.75	20	\$578

WILLIAMS INN

		Incremental Cost	Total Metric Tons of eCO2 saved per year	System Life	Cost per metric ton over system life
C2	Exterior Envelope Upgrades	\$38,000	18.8	50	\$40
C3a	Mechanical Upgrades	\$378,000	75.4	20	\$251
C3b	Electrical and Lighting Upgrades	\$82,000	15.1	10	\$545
C3c	High Efficiency DHW	\$67,000	13.4	20	\$250
C8	Photovoltaics- 30 kw @ \$2.86 per watt	\$86,000 (low) (PPA)	12	20	\$358

GARFIELD

		Incremental Cost	Total Metric Tons of eCO2 saved per year	System Life	Cost per metric ton over system life
C2	Passive Haus Envelope	\$69,800	11.3	50	\$123
C3a	DHW- drain water recovery	\$4,500	1.9	50	\$47
C3b	LED Lighting	\$25,000	3.9	20	\$321
C3c	Electric heat vs. gas boiler (no cooling)	(\$24,300) savings	3.2	30	-\$757 but positive
	Phase change material? Little heating benefit				

Summary Tables

SCIENCE CENTER NORTH

		Incremental Cost	Total Metric Tons of eCO2 saved per year	System Life	Cost per metric ton over system life
C2	Envelope Enhancements	\$348,600	27.3	40	\$319
C3a	Improved Lighting	\$89,200	12	20	\$371
C3b	Dual Enthalpy Economizers	\$3,000	-0.4 (yes, more)	25	-\$329
C3c	Supply air temperature reset	\$2,200	15.4	60	\$2
C3d	Energy Recovery enthalpy wheel	\$10,000	4.1	25	\$97
C3e	Reduced Minium flow	\$2,200	23.4	60	\$2

09 March 2018

Williams College Measurement and Verification of Performance Process

EFFORT	ACTION	DELIVERABLE	TEAM MEMBERS	COMMENTS
		SCHEMATIC DESIGN (S	5D)	
5%	Identify target systems and metrics. Identify systems to monitor (e.g., water system) and metrics for monitoring (e.g., amount of potable water use)	List of systems and metrics to be monitored	Project Owner; Design Team (i.e., Architect, M+V Consultant, MEP Designer, Water System Designer, PV System Designer); General Contractor; Building Manager	
5%	Create schematic metering plan. Create a schematic metering plan that identifies which systems will be monitored and where equipment will be located	Schematic metering plan for each metered system	Design Team (i.e., Architect, M+V Consultant, MEP Designer, Water System Designer, PV System Designer); General Contractor; Building Manager	
		DESIGN DEVELOPMENT	(DD)	
15%	Develop metering plan. Develop a more detailed metering plan that includes descriptions of variables, metering equipment, and data collection frequencies, as well as diagrams depicting where metering equipment will be located	Metering plan	Design Team (i.e., Architect, M+V Consultant, MEP Designer, Water System Designer, PV System Designer); General Contractor; Building Manager	
5%	Confirm metering plan. Confirm metering plan with all project team members, including those involved in design, construction, and day-to-day operations of the project	Sign-off on metering plan	Project Owner; Design Team (i.e., Architect, M+V Consultant, MEP Designer, Water System Designer, Electrical Consultant, PV System Designer); General Contractor; Building Manager	
		CONSTRUCTION DOCUMEN	TS (CD)	
5%	Confirm constructability. Review metering plan with the construction team to verify constructability of the metering plan	Sign-off on metering plan, with respect to construction and construction documents	Design Team (i.e., M+V Consultant); Construction Team (i.e., Electrical Consultant, HVAC Consultant, Plumbing Consultant, IT Consultant); General Contractor	

Metering Diagram- Appendix D - RFP

RFP scope developed with Linnean Solutions on behalf of c&h architects

		CONSTRUCTION	
5%	Install metering equipment. Communicate with sub-consultants and participate in the installation process to verify that equipment is installed properly	Installation of metering equipment	Design Team (i.e., M+V Consultant); Construction Team (i.e., Electrical Consultant, HVAC Consultant, Plumbing Consultant, IT Consultant); General Contractor
5%	Install metering displays. Communicate with sub-consultants and participate in the installation process to verify that equipment displays are installed properly	Installation of metering displays	Design Team (i.e., M+V Consultant); Construction Team (i.e., Electrical Consultant, HVAC Consultant, Plumbing Consultant, IT Consultant); General Contractor
		COMMISSIONING (Cx)	
5%	Support Cx process. Communicate regularly with the commissioning team	N/A	Design Team (i.e., M+V Consultant); Commissioning Team
5%	Confirm installation. Confirm equipment has been installed properly and metering system has been connected to proper data storage system	Documentation that systems have been properly installed	Design Team (i.e., M+V Consultant); Commissioning Team; Construction Team as needed (i.e., Electrical Consultant, HVAC Consultant, Plumbing Consultant, IT Consultant); General Contractor
20%	Verify metering system. Verify that data collected is complete and accurate (to best of knowledge), and that systems are performing as designed or expected	Documentation that data has been reviewed and systems are operating as planned; Adjustments to the system as needed	Design Team (i.e., M+V Consultant); Commissioning Team; Construction Team as needed (i.e., Electrical Consultant, HVAC Consultant, Plumbing Consultant, IT Consultant); General Contractor
		ONGOING MONITORING	
25%	Periodic Analysis. Periodic analysis of load profiles, seasonal variations, equipment functionality, performance, etc.	Quarterly assessments of collected data compiled in reports to owner	M+V Consultant; Building Manager; Project Owner

Metering Diagram- Appendix D - RFP

RFP scope developed with Linnean Solutions on behalf of c&h architects

Designed by PBDW, diagrammed by c&h

Metering Diagram- Appendix D

METERING DIAGRAM

Designed by C7A and WSP. Diagram by WSP.

Metering Diagram- Appendix D

09 March 2018

Biophilic moment

c&h architects

APPENDIX D

Project Name:	The Log
Date:	5/16/16
Appendix D:	Monitoring

Component	EXPECTED RANGE	ACTUAL:	NOTES:
Kitchen Hood			Review data with actual occupancy trends. Ensure staff is not turning on hood before cooking starts as a habit.
Hot Water			Review summer gas loads with flow meters.
Attic	60-80 degrees	Checked when -10 degrees and 20 mph winds- ok	Attic contains freeze sensitive equipment – sprinklers. Attic is within envelope, but has no dedicated full time heat source. Attic is provided with emergency electric fan coil connected to T-Stat to prevent freezing.
Fireplace Gas			Fireplace consumption trends should be logged in concert with occupancy and cooling equipment to confirm they are not driving unnecessary space conditioning. Ensure staff is not turning on the fireplaces in the summer when unoccupied.

Occupancy Monitoring Narrative - Appendix E

11 Month Walkthrough- Review Data- Appendix F

@ The Log- c&h architects

Green Gauges

The following is based upon information from Automated Logic Dashboard and School Dude from July 1, 2016 to June 30th, 2017.

EUI (kbtu/sf/year)	Proposed at Schematic	Actual	Notes
Total	75	142	EPA Target finder for Food Service is 231 This total does not include the pv production.
Cooking (Nat Gas)	12 (16%)	69 (51%)	Was induction electric cooking at SD with far fewer meals and no catering.
Building (Steam & Elec)	63	57	
PV offset	nic	(8)	Estimated pv production

- Total Energy 989,145 kbtu + 58,021 kbtu of pv offset = 1,047,175
- Area 7,816 sf (only including portion of the basement)

EUI 134

Energy Mix	Electric- 43% Steam- 4% Natural Gas- 53%	125,168 Kwh (we think this is net of pv production) 11,195 Kwh 5,136 CCF
	PV Production	Meter not reading on Automated Logic at the moment 15.6kw should produce ±17,000 kwh annually (or 58,021 kbtu)

Comment & Suggestions:

- 1. If the vendor is not paying the gas bill, consider it, especially if they are servicing their catering business from this kitchen. The initial projection for cooking was 100-120 meals a day for 260 days per year. Based on a call to the Log, they estimate 300-400 meals per day all year, not including the catering function.
- 2. We have observed the two gas fireplaces are on frequently. They each are rated 31,500 btu/hr Max, 17,100 btu/hr Min. This load is within the Natural Gas allocation and included within Actual cooking above. Their use could be one reason the steam load in so low.

11 Month Walkthrough- Review Data- Appendix F

@ The Log- c&h architects

Biophilic moment

Andy was working on one of the projects, and as usual...

he had an opinion...

... about using source EUI rather than site EUI, and what this means for greenhouse gas emissions.

So we hired him to think about that, here's what happened.

Williams was asking for site EUI – energy use at the meter at the building.

But what they care about is the environmental impact – meaning greenhouse gas emissions, soooo...

Williams was asking for site EUI – energy use at the meter at the building.

But what they care about is the environmental impact – meaning greenhouse gas emissions, soooo...

Williams was asking for site EUI – energy use at the meter at the building.

But what they care about is the environmental impact – meaning greenhouse gas emissions, soooo...

- WOOD
- OTHER

Williams College								180214
CO2-equivalent Emiss	ions by Fu	el Type						
Fuel Source	unit	Btu/unit	source/ site factor [1]	precombustion emissions [2] Ib CH4/unit	precombustion emissions [2] Ibs CO2e/unit	combustion emissions [3] Ib CO2/unit	total lbs CO2e/uni t [4]	total lbs CO2e/MMBtu [4]
Oil #2	gallon	139,600	1.2	0.035	3.0	22	29	207
Natural Gas	therm	100,000	1.1	0.070	10	12	23	234
Propane	gallon	91,330	1.2	0.035	3.0	13	18	193
Grid electricity	kWh	3,413	1.7				1.23	361
WC CoGen electricity	kWh	3,413	1.0				0.84	245
Average non-PV electricity [6	kWh	3,413	1.6				1.2	340
PV generated electricity	kWh	3,413	1.0				0.064	19
WC Steam	MMBtu	1,000,000					344	344
WC Chilled Water	kBtu	1,000					0.083	83

22	or Photovoltaic Systems Energy input into production,	kWh operavi	nout/ nook wat	t papale only (
	50% increase for balance of	the second se				
	Total system kWh input/Wp	system, includ	ing racking, in	verter, mstalla	uon, esumate	
	Avg US lbs CO2/kWh [3]				-	
	Avg China lbs CO2/kWh	estimated for	2017 [4] at 25	% reduction fr	om 2015	
and the second se	Avg PV production CO2/kWh		the second se	and the second sec	a here the second se	
	Albany kWh/yr-Wp	, , , , , , , , , , , , , , , , , , , ,				
	Albany lifetime kWh/Wp, acc	ounting for 0.7	% decrease in	putput per ye	ar [5]	
0.064	IbCO2/kWh- lifetime, for PV	/ in Albany N	Y			
Figure of in	terest only					
2.6	energy payback, years, in Al	bany				
	n data from * PHOTOVOLTA pport of PSE AG Freiburg, 11				itute for Solar E	nergy Systems
[2] Both the mainly beca	production and installation lo ause the environmental impac production of PV in China ha	ocation of PV in t of the electri	nfluence its envice the network of the second	vironmental im oduction is ver	y locationally de	ependent, and
101 Lun	ww.quora.com/How-much-Co	02-is-produce	d-per-KWH-of-	electricity		
[3] nttps://w	ergypost.eu/chinas-electricity	-mix-changing	-fast-co2-emis	sions-may-pea	aked/	
	ergypost.eu/chinas-erectricity		Teres of a office	stories interprete		

What is the CO2e for PV's?

	Chiller Output	Building Usage			
	Plant data from portal	From Building Data			
	kWh output	kWh Usage	Building Usage/ plant output		kBtu Usage
2,014	3,272,885	6,009,365	1.84		20,503,954
2,015	3,322,383	8,213,904	2.47		28,025,839
2,016	3,305,784	7,706,023	2.33		26,292,951
2,017	3,155,202	8,108,556	2.57		27,666,395
lay 2014 from avg of thre	e later years				
			3.89	Last 3 Years Wtd Avera	age COP
			3.90	4-Year Average COP	1222
Data from portal			Calculated	4 year average COP	avg May-Oct COP
				3.90	4.68

Williams has developed a fabulous data base of energy usage on campus, which is measured monthly at central plant and at each building by fuel type.

Quantifying Williams' carbon emissions

* Does not include distribution losses within the building or steam-to-hot-water or chilled water heat exchange losses

Williams College		Enter data in high	nlighted cells only	61			180214	
Building Emissions Calcul	lator							
Building Name					-			
Building Area [2]								
Name of person entering da	ta							
Company of person entering		6			-			
Date data entered							1	
Design phase [3]								
Energy Consumption								
Fuel Source	unit	Btu/unit	Site Energy Units per year at the building	Source Energy/Site Energy - ratio	Source Energy Units per year (calculated)	total lbs CO2e/unit	Total lbs CO2e /year (calculated)	Metric tons CO2e /year (calculated)
WC Steam	MMBtu	1,000,000	Contraction (Contraction)			344	1	
WC Chilled Water	kBtu	1,000	C		-	83	-	
Natural Gas	therm	100,000		1.09		23		-
Propane	gallon	91,330		1.15		18		÷
Oil #2	gallon	139,600		1.16	÷	29		+
Electricity [1]	kWh	3,413		1.7	T.E	1.16	11 18	6
PV generated electricity	kWh	3,413		1.0		0.064		
Building Metrics								
Peak Heating Load [4]	kBtu/hr.							
Peak Cooling Load [4]	kBtu/hr.							
Annual Heating Load [5]	MMBtu/yr		1					
Annual Cooling Load [5]	MMBtu/yr							
Lighting Power Density [6]	watts/sq.ft.							
Building air tightness [7]	cfm75/sq.ft	. shell						
Building air tightness units u	sed in energy	model [8]						
Building air tightness value u		the state of the s						

Updated Calculator for the next round of projects with \$/CO2e/year

Williams College	9				1/22/10
Site Energy El	UI Goals	by B	uilding T	vpe	
kbtu/sf/year		1001			
				make a footno	ote
Building Type	Existing EUI 2016 campus chart	from EUI	Goal EUI	Dartmouth 2016 goals	Sources of Site Energy Goals
Dormitory [1]	77		30	40	College of the Atlantic Dorm village, EUI=27, 50 beds 20,500 sq.ft.
Dormitory with AC			35	50	Putney School Gray Dorm DER modeling EUI=20, same building modeled to code EUI=48, 2 floors 30 occupants wood frame bldg
Houses (small dorms under 15	58	_	20		Waterfront Apartmens, 4 floors, 42 units, 45k sq.ft. EUI measured = 24
beds)					Houses range of 20 to 35
Administrative	84		35	50	South Village small office project, EUI=33 and Mcalay offices EUI=29, very small office
Classrooms			50	70	Oakes Hall, Vt Law School, EUI=35 (22 if had ASHP)
Science [3]	235		138	100	138 based on model for Williams South Building
Sports	62		30	70	Putney School, Field House (14k sq.ft., light occupancy, sport facility, 60ish avg temp) EUI=14
Dining Halls	151		120	130	Proctor Academy first year 88 kBtu/sq.ftyr

Exemplar EUI

Exemplar Buildings CO2e Emissions							
Project	Project Site EUI kBtu/ sq.ftyr						
CoA dorms	27						
Putney Gray Dorm	20						
Waterfront Apts	39						
South village offices	33						
Oakes Hall	35						
Putney Field House	14						
Proctor Dinning Hall	88						

Exemplar Build CO2e Emissio							
Project	Project Site EUI		Oil	electricity	natural gas	propane	wood pellets
	kBtu/		gallons/yr	kWh/yr	ccf/yr	gallons/yr	tons/yr
	sq.ftyr	lbs Co2-e/unit>>>>	29	1.23	23	18	3,649
	sq.ityi		Annual usage				
		Sq.ft. conditioned					
CoA dorms	27	20,552		62,625			21
Putney Gray Dorm	20	10,457		61,277			
Waterfront Apts	39	45,000		202,000	10,545		
South village offices	33	17,000	1,508	101,960			
Oakes Hall	35	23,000	3,450	96,039			
Putney Field House	14	14,000		57,000			
Proctor Dinning Hall	88	16,642		400,000		948	

Exemplar Buildings								\frown
CO2e Emissio	ns							
Project	Project		Oil	electricity	natural gas	propane	wood pellets	CO2-e emitted
_	Site EUI		gallons/yr	kWh/yr	ccf/yr	gallons/yr	tons/yr	Metric tonnes
	kBtu/	lbs Co2-e/unit>>>>	29	1.23	23	18	3,740	CO2e/yr
	sq.ftyr							
		Sq.ft. conditioned						
CoA dorms	27	20,552		62,625			21	71
Putney Gray Dorm	20	10,457		61,277				34
Waterfront Apts	39	45,000		202,000	10,545			225
South village offices	33	17,000	1,508	101,960				77
Oakes Hall	35	23,000	3,450	96,039				99
Putney Field House	14	14,000		57,000				32
Proctor Dinning Hall	88	16,642		400,000		948		231

Exemplar Build	dings					
CO2e Emissio	ns					
Project	Project Site EUI kBtu/		Total pounds CO2e/sq.ftyr			
				With PV on		
	sq.ftyr	lbs Co2-e/unit>>>>		Project		
		Sq.ft. conditioned				
CoA dorms	27	20,552	7.6	7.6		
Putney Gray Dorm	20	10,457	7.2	0.38		
Waterfront Apts	39	45,000	11	11		
South village offices	33	17,000	10	10		
Oakes Hall	35	23,000	9.5	9.5		
Putney Field House	14	14,000	5.0	0.26		
Proctor Dinning Hall	88	16,642	31	1.5		

"All building projects at Williams College must meet energy efficiency and greenhouse gas emissions targets."

Further discussions

- Should the metric be <u>lbs CO2e/sq.ft.-year</u> by building type, in addition to or instead of EUI at the meter?
- Dig into details of assumptions: how much methane is "really" emitted by natural gas use?
- Tabulate <u>embodied carbon</u> in buildings develop guidelines?
- Tabulate <u>construction process energy</u> develop guidelines?
- Is the goal <u>net zero?</u> <u>Minimum total carbon</u>?
- What is the path to reach the goal?

Green Gauges

09 March 2018

Biophilic moment

Green Gauges will be made available shortly for use within a Creative Commons license.

A **Creative Commons** (**CC**) **license** is one of several public copyright licenses that enable the free distribution of an otherwise copyrighted work.

A CC license is used when an author wants to give people the right to share, use, and build upon a work that they have created.

CC provides an author flexibility (for example, they might choose to allow only non-commercial uses of their own work) and protects the people who use or redistribute an author's work from concerns of copyright infringement as long as they abide by the conditions that are specified in the license by which the author distributes the work

Creative Commons

Questions?

Thank you.

Williams

Amy Johns ajohns@williams.edu

c&h architects

Thomas RC Hartman, AIA tom@candharchitects.com

Energy Balance, Inc.

Andy Shapiro andy@energybalance.us

Contact information