Hybrid Distributed Energy Resources
What Works and Why

Phoenix Beverage – Industrial CHP Application
Manhattan Beer Distributer

Phoenix Beverages is BIG... a wall of beer cases in their temperature controlled warehouse.
Specific Site Info.

Highlights:

- Cost to run new lines was prohibitive.
- 100% off-grid (independently resilient)
- Avoid 250 diesel trucks on streets; Now the entire fleet runs on CNG (2500+ deliveries per day)
- Pay NGrid Gas 100% (Nothing to ConEd – all self-generating)
- Large roof that can potentially integrate future PV
- $600,000. + and 3,100 tons of CO2 saved annually
- Electricity provides to facility lighting and large forklift recharging station
- Operational 1 day post-Sandy
 Thank Goodness!
Discussion Points/Market Trends:

- Many states (and some countries) pushing electrification as “Beneficial Electrification”
 - California & Several Provinces in Canada
- Important to understand the balance
- Better term is “Efficient Electrification” and includes several technologies to maximize efficiency. (CHP, Solar, Fuel Cells, Battery Storage, Etc. in a well controlled system.)
- Identify resource constraints and design a balanced solution that meets load requirements.
 - Multiple efficient technologies can be utilized by recognizing the capacity and practical constraints on each technology and integrating them together into one solution.
- Renewable Only vs. Hybrid Approaches.
 - Idealistic or realistic?
- What is the Utilities role?
 - Advocate for customers.
 - Provide market acceleration measures
 - Education and Outreach
- What trends are driving policy/customer behavior?
 - TOU rates, Demand Charges, Departing Load Charges, Incentives, Policy and Utility Tariffs, Etc.
- What is the role of the microgrid?
Hybrid DER

Building Energy NYC Conference Panel

October 3, 2018
Bright Power’s Resilient Power Hub

1. **NATURAL GAS CO-GENERATOR**
 10kW m-CHP unit

2. **SOLAR PHOTOVOLTAIC ARRAY**
 58 panels (4 shown) totalling 20kW

3. **ENERGY STORAGE**
 40kWh battery tower stack

4. **HOT WATER TANK**
 stores waste heat from m-CHP unit

5. **SMART CONTROL SYSTEM**
 monitors and maintains system performance

6. **CORE BUILDING SYSTEMS**
 kept online during grid failure

In grid-connected scenarios the battery is discharged during times of peak demand on the energy grid, reducing energy costs for the building.
172nd Street Resilient Power Hub
Building Energy NYC Hybrid DER
DER Dispatch Monetization Opportunities
Increasing Sustainability and Resiliency

October 4, 2018
Solving CHP Load Factor Limitations

Many factors can contribute to low load factor such as utility export buffer limits, thermal load limits, prioritization of resiliency or redundancy

2017 Average Load Factor 50%

2017 Load Factor of CHP Systems in Multifamily Properties (NYSERDA DG Integrated Data System)

Utilizing the available CHP kW output data for 72 Multifamily + Hotel properties (CHP capacity below 1 MW)
The Grid Edge Hybrid DER Value Opportunities:

Data transparency generates opportunities to integrate/optimize Hybrid DER resources to balance building’s unique load profile - lowering costs, generating revenue, increasing resiliency.

The Grid Edge: Electricity Consumption is Extremely Volatile When View at Second Level Granularity (as opposed to 15-min)
<table>
<thead>
<tr>
<th>CHP Standalone</th>
<th>CHP + Battery Sized to Increase CHP Utilization Rates</th>
<th>CHP + Battery Sized to Full Stack Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kW CHP</td>
<td>100kW CHP + 50kW Battery</td>
<td>100kW CHP + 125kW Battery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ CHP runs closer to 100% as Battery charges from Backfeed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Battery peak shaves daily, discharges during Demand Response, CHP Maintenance, CHP thermally constrained</td>
</tr>
</tbody>
</table>

CHP Utilization 40%-80%

CHP runs closer to 100% as Battery charges from Backfeed

![Graphs showing CHP + Battery Scenarios](image URLs)
Dispatching Hybrid DER to Achieve “Full Stack” Value – Integrating CHP, Battery Storage, Intelligent Controls, and Predictive Analytics/AI

On/Off Peak Price Spread

Peak Demand Management

Demand Response / ICAP Reduction
Goal: Integrate a battery storage system Behind the Meter with a 2x100kW CHP system in order to increase CHP utilization

Problem: CHP system utilization is limited because high frequency data reveals incidental exports to grid

Value Stack of a 125 kW / 243 kWh battery installation
- Stabilize load at the building through high frequency charge/discharge cycling in order to increase capacity of existing 200kW CHP system
- Peak Shaving Cost Reduction and Demand Response Revenue
- Resiliency - enhance backup power capacity
- Sustainability - reduce GHG emissions

The optimal size of the battery is dependent on the relationship between the size of the CHP system, base building load and the export buffer

The battery can perform multiple functions by adjusting its charge/discharge algorithm and targeting a certain level of charge.

Current Hybrid DER Dispatch Program: CHP Strategic Load Management, Intelligent Controls, Predictive Analytics/AI, Con Edison/NYISO Demand Response Participation
Contact Information

Dale Desmarais
Tecogen
Director of Business Development
Dale.Desmarais@tecogen.com
413.315.1778

Jamin Bennett
Bright Power
Director of On-Site Generation
jbennett@brightpower.com
646.780.5526

Jeff Hendler
Logical Buildings
Chief Executive Officer
hendler@logicalbuildings.com
908.517.3728