Resilience Gaps & Clean Energy Solutions at State-Owned Medical & Residential Care Facilities

NESEA Boston - March 2019

- Intro
- Policy landscape
- Study overview
- Task 1: Energy resilience gap analysis
- Task 2: Clean energy technology screening
- Task 3: Clean energy system modeling
- Technology examples
- Results
- Keys for success
- Next steps

Agenda

The Leading by Example Program (LBE) works collaboratively with state agencies and public colleges and universities to advance clean energy and sustainable practices that reduce the environmental impacts of state government operations

Eric Friedman Director of Leading by Example MA Department of Energy Resources We are an independent firm of designers, engineers, architects, planners, consultants and technical specialists working across every aspect of today's built environment.

Alan Glynn Senior Energy Engineer Arup Learning objectives

- Explain common resilience gaps and threats affecting medical & residential care facilities
- Define potential clean energy technologies for mitigating resilience gaps, including CHP, solar, & batteries
- Discuss challenges with meeting resiliency and environmental goals while maintaining cost effectiveness
- Understand opportunities and hurdles associated with specific clean energy strategies designed to enhance energy resiliency

Policy Landscape

Why do we need to be resilient?

The New York Times

Nursing Home Deaths in Florida Heighten Scrutiny of Disaster Planning

Some hospitals hang on as others close amid Harvey's floods

Following deaths from Irma, Florida looks to new rules for keeping nursing homes cool after outages

6 O 0

By Jen Christensen, CNN) Updated 12:29 AM ET, Thu August 31, 2017

https://www.nytimes.com/interactive/2017/09/01/upshot/cost-of-hurricane-harvey-only-one-storm-comes-close.html

Huminana Gaarnas

trillion by 2025 Lost Business Sales trillion by 20205 Lost Jobs 2.5 million jobs in 2025 Cost to Families <u>\$3,400</u> per year

Cost to US GDP

http://www.asce.org/failuretoact/

Massachusetts Resiliency Context and Policy Drivers

Executive Order 569: Establishing an Integrated Climate Change Strategy for the Commonwealth (2016)

- Establish GHG emissions reduction targets for 2030 & 2040
- Develop Commonwealth Climate Adaptation Plan, including vulnerability assessments and adaptation options for state government, cities and towns

Community Clean Energy Resiliency Initiative (CCERI)

- \$26 million awarded to 19 municipal resiliency projects
- \$11.5 million awarded to 10 hospitals for resiliency

\$2.4 Billion in Proposed Governor and Legislative Resiliency Initiatives

Massachusetts Clean Energy Context and Policy Drivers

Global Warming Solutions Act (2008)

- 2020 GHG reduction Goal: 25% reduction over 1990 levels
- 2050 GHG reduction Goal: 80% reduction over 1990 levels

Leading by Example Program

- 2020 & 2050 GHG reduction goals: 40% & 80% over 2002 baseline
- Energy Use Intensity reduction goal: 35% over 2004 baseline
- Renewable energy goal: 30% of electricity consumption

Renewables

- Portfolio standard requires 1%/ year increase in Class I renewables until 2020 & 2%/ year increase until 2029
- Current 1600 MW solar goal on top of existing 2000 MW
- Legislative mandate for 1600 MW of wind by 2027

What is resilience?

Resilience is the capacity to maintain services, increase flexibility, and continue to thrive despite shocks and stressors.

Key is to focus on the **CRITICAL FUNCTIONALITY** of systems, not simply restoring the system itself

Why do we need to be resilient?

Enhanced resilience:

- Increases public and patient safety
- Avoids evacuations
- Protects vulnerable populations
- Reduces burden on emergency management personnel
- Reduces costs associated with crisis management

Study overview

Overview: Resiliency Study Goals

Purpose of Study	"Identify opportunities to utilize clean energy technologies to increase the energy resiliency of each facility, thereby reducing the likelihood of prolonged outages during extreme weather events"
	• Increase length of time the site is able to maintain facility-wide or critical load operations during grid outage
Resilience Goals	• Increase number of ancillary services or facility square footage with backup generation in the event of grid outage
	• Increase the redundancy of the existing backup generation
	• Replace or supplement fossil fuel back up power to increase facility operational capabilities during power outage
Clean Energy Objectives	• Provide diversity of fuel sources to increase reliability by removing reliance on a single fuel and on fuel transport
	• Reduce GHG emissions, reliance on fossil fuels

Project Overview: Background on Site Selection

Consulted with key agencies

- Emergency management, DCAMM, public safety
- identified health and human services facilities where emergency resources would be substantially taxed during widespread power outages

Rationale for site selection

- State-owned facilities providing 24/7 residential & medical care
- Vulnerable populations
- Difficult to evacuate during emergency
- Facility diversity and geographic distribution

Project Overview: Sites Selected

- 12 Health & Human Services facilities
- 12,000 1,000,000 square feet
- 10-350 person capacity
- Various building ages (majority 30+ years old)

Primary Purpose	Size (SF)	Capacity	Year Built
Community Mental Health Center	61,000	16	1967
Community Mental Health Center	12,000	12	1950s
Community Mental Health Center	67,000	28	1982
Community Mental Health Center	86,000	25	1976
Hospital	301,061	218	1899-1999
Hospital	1,036,982	350	1890s
Hospital	179,112	102	1937
Intermediate Care Facility	314,385	138	1963-70
Long-term Care Facility	233,000	270	1950-70s
Long-term Care Facility	609,427	270	1920-30s
Youth Services Center	70,000	45	2016
Youth Services Center	23,390	10	1978

Project Overview: Tasks 1-4

Task 1: Existing Conditions Assessments	 Evaluate energy systems, emergency preparedness, critical & non-critical loads Summarize energy resiliency gaps
Task 2: Preliminary Review of Energy Resiliency Strategies	 Identify potential clean energy technologies & strategies Select 3 technologies per site for in-depth analysis
Task 3: Feasibility Studies	 Technical feasibility of technologies & strategies Cost/Benefit Analysis
Task 4: Energy Resilience Guidance Documents for State Agencies	 Guidance document with energy resiliency benefits & strategies Site assessment guide to assist agencies in identifying key energy resiliency gaps at their facilities

Task 1 Energy resilience gap assessment

Site investigation

Guided interview and site walk

- Are any sites particularly vulnerable to projected climate change impacts?
- Are any sites more susceptible to outages or operational failures?
- Are certain facility operations more vulnerable to outages than others?
- Are any of those operations critical?
- What types of resilience is needed for each site?
- How much would adding clean energy resiliency cost?

Shocks and stressors

Manmade Hazards

Winter Storms

Site score card

Sufficient for current needs with significant redundancy Sufficient for current needs with some redundancy Sufficient for current needs, but lacks redundancy Insufficient for current needs

Currentia	ms Resilience	_						
Electric	Utility Service	1	-					
er al	System Resilience	1						
Normal	System Capacity	2	1.					
Z A	Equipment Age/ Condition	1						
	System Resilience	1						
er p	On-site Generation Capacity 2							
Backup Power	On-site Fuel Storage Capacity	2	1.					
	Equipment Age/ Condition	1						
HVAC			-					
	System Resilience	2	-					
	System Capacity	2	1					
Heating	On-site Fuel Storage Capacity	2	2					
He	System Backup Power/ Supply	2						
	Equipment Age/ Condition	2						
1931	System Resilience	2						
Cooling	System Capacity	2						
00	System Backup Power/ Supply	D	0					
U	Equipment Age/ Condition	3						
Miscell	aneous Systems		-					
	Records	2						
Securit	y/ Access Control System	2						
	rs/ Patient Transport	3						
	tic Water	2	2.					
Sanitar	v/ Wastewater	1						
Telecor		2						
			-					
	Systems Resilie	ence Average	1.					
Oper	ational Resilience							
Emerge	ency Mgmt. Plan		0					
Staff Ad	cessibility		2					
Staff Ad	commodations		1					
Operat	Operational Redundancy/ Access to Nearby Facilities							
Foodse			0					
Pharma	acy/ Drug Storage		2					
Floodir			2					
Sensitiv	vity to Extreme Heat or Cold		1					
	vity to Extreme Wind		2					
Sensitiv	ity to Extreme wind							

Electrical

• Normal and emergency power system

HVAC

• Heating and cooling systems

Miscellaneous Systems

- Medical records
- Security/Access control
- Elevators/Patient Transport
- Domestic Water
- Sanitary/Wastewater
- Telecom/IT

Energy resilience

Suste	ms Resilience			
Electric				
LICCUIN	Utility Service	2	2	
nal	System Resilience	1		
Normal	System Capacity	2	1	
2 -	Equipment Age/ Condition	1		
- 20	System Resilience	1		
Backup Power	On-site Generation Capacity	2	1	
Pov	On-site Fuel Storage Capacity	2		
2.7	Equipment Age/ Condition	1		
HVAC				
1.0	System Resilience	2		
¥	System Capacity	2	2	
Heating	On-site Fuel Storage Capacity	2		
Ŧ	System Backup Power/ Supply	2		
1	Equipment Age/ Condition	2		
1 13	System Resilience	2		
Cooling	System Capacity	2		
00	System Backup Power/ Supply	- D +	1	
	Equipment Age/ Condition	3		
Miscel	aneous Systems	100		
Medica	Records	2		
Securit	y/ Access Control System	2		
Elevato	ars/ Patient Transport	. 3		
Domes	2	2		
Sanitar	y/ Wastewater	1		
Teleco	m	2		

Operational resilience

Operational Resilience				
Emergency Mgmt. Plan	0			
Staff Accessibility	2			
Staff Accommodations	1			
Operational Redundancy/ Access to Nearby Facilities	2			
Foodservice	0			
Pharmacy/ Drug Storage	2			
Flooding Risk	2			
Sensitivity to Extreme Heat or Cold	1			
Sensitivity to Extreme Wind	2			
Seismic Risk	2			

Operational Resilience Average

Emergency Mgmt. Plan

Staff Accessibility

Staff Accommodations

Operational Redundancy/ Access to Nearby Facilities

Foodservice

Pharmacy/ Drug Storage

Flooding Risk

Sensitivity to Extreme Heat or Cold

Sensitivity to Extreme Wind

Seismic Risk

Portfolio score card

	Systems Resilience Summary							
Systems	Elec	Electrical HVAC						
Resilience Average	Normal Power	Backup Power	Heating	Misc. Systems				
1.4	1.5	1.3	2.2	0	2.0			
1.3	1.8	1	2	0	1.8			
0.7	1.8	0	0	0	1.5			
1.4	2	1.5	2	0	2.0			
1.4	1.5	1.5	2.2	0	2.0			
1.6	2	1.8	2	0	2.2			
2.0	2	1.8	2.2	1.8	2.0			
2.2	1.5	2.8	2.4	2.3	2.2			
2.2	1.8	2.5	2.4	2	2.3			
2.0	1.5	2.3	2	1.8	2.2			
1.8	1.5	2	1.6	2	1.8			
1.8	2.3	2.3	2.2	0	2.0			
1.6	1.7	1.7	1.9	0.8	2.0			

	Operational Resilience									
Operational Resilience Average	Emergency Mgmt. Plan	Staff Accessibility	Staff Accommodations	Operational Redundancy/ Access to Nearby Facilities	Foodservice	Pharmacy/ Drug Storage	Flooding Risk	Sensitivity to Extreme Heat or Cold	Sensitivity to Extreme Wind	Seismic Risk
1.8	2	2	1	2	3	2	2	1	2	1
2.1	3	1	2	3	3	2	2	1	2	2
1.7	2	2	3	2	0	2	2	1	1	2
1.4	0	2	1	2	0	2	2	1	2	2
1.8	2	2	1	2	2	2	2	1	2	2
1.6	2	2	1	2	2	2	2	1	1	1
1.7	2	2	1	2	1	2	2	1	2	2
2.1	2	3	2	3	3	2	2	2	1	1
2.1	2	3	2	2	3	3	2	2	1	1
1.8	2	2	1	2	2	2	2	1	2	2
2.1	2	3	2	2	3	2	2	2	1	2
1.8	2	2	1	2	2	2	2	1	2	2
1.8	1.9	2.2	1.5	2.2	2.0	2.1	2.0	1.3	1.6	1.7

Key portfolio Resilience Gaps

Lack of backup power for cooling – 7 sites Generator failure during an extended utility outage – 4 sites Lack of backup power for food service – 2 sites Emergency preparedness planning – 1 site

Also identified several resilience "quick hits" which do not require a clean energy solution

Task 2 Clean energy technology screening

Solar photovoltaics

Battery energy storage

Solar thermal

Combined heat and power

High efficiency fuel cells Thermal energy storage

Wind power

Solar photovoltaics

Battery energy storage

Solar thermal

Combined heat and power

High efficiency fuel cells Thermal energy storage Wind power

Task 3 Clean energy system modeling

GHG and energy impact

Energy models

Inputs:

- Existing use data
- ASHRAE benchmark data Energy efficiency measures

Outputs:

- Annual load profiles
- Typical daily load profiles

Key challenge:

Limited hourly data resulted in the need to estimate energy profiles

Average hourly electric load by month

Resilience needs

Inputs:

- Determined needs based on resilience gap analysis
- Estimated loads based on site data and equipment nameplates
- Estimated daily load profile during power loss event

Key challenge:

Limited sub-metered data required highlevel estimate to determine load profile

Output:

• Daily load profile of critical systems

Financial analysis

First costs:

Conservative cost estimates Mass Save CHP incentive LBE incentive

Annual savings/costs:

Energy cost savings Demand charge savings SMART AECs/RECs Clean energy system O+M costs Fuel costs

Did not include financial benefits from resilience

	Baseline	65 kW CHP	65 kW CHP w/ 200 kW PV inside	65 kW CHP w/ 200 kW PV and 120 kWh battery	200 kW solar PV and 302 kWh battery
First costs (S)					
Installed cost	N/A.	(215,000)	(1,315,000)	(1,448,000)	(1,435,000)
Mass Save CHP program incent.	N/A	27,100	16,900	15,800	
LBE incentive	N/A		330,000	354,000	390,400
Net installed cost	N/A	(187,300)	(968,100)	(1,078,200)	(1,044,600)
Annual costs (\$) Utility electric supply					
cost	(45,700)	(16,500)	(5,000)	(6,200)	(22,900
Utility electric T&D cost	(25,900)	(9,400)	(2,900)	(3,500)	(13,000
Utility electric demand cost	(11,000)	(4,400)	(1,800)	(100)	(4,800
Utility thermal energy cost	(31,800)	(13,200)	(19,200)	(19,400)	(31,800
Proposed clean energy system maintenance cost	N/A	(3,260)	(2,000)	(1,900)	
Proposed clean energy system fuel cost	N/A.	(40,940)	(25,000)	(23,300)	
Annualized overhaul cost	N/A	(2,600)	(2,600)	(5,300)	(6,700
SMART incentive	N/A		24,300	32,500	37,800
AEC incentive	÷	8,000	5,700	5,700	
Net annual cost	(114,400)	(82,300)	(28,500)	(21,500)	(41,400)
Net annual incentives	N/A	8,000	30,000	38,200	37,800
Annual savings compared to baseline	N/A	32,100	85,900	92,900	73,000
Summary					
Payback period (simple payback, years)	N/A	5.8	11.3	11.6	14.3
30-yr NPV (\$)	N/A	375,000	527,000	544,000	316,000

Clean energy system model

Two scenarios: Sized to optimize ROI

Sized to meet resilience needs

Greenhouse gas and energy impact

Confirmed overall GHG reductions for each option as well as reduction in purchased energy

Technology Examples

CHP example

CHP basics

CHP systems convert natural gas to electricity and thermal energy (heat) Prefer to operate at a consistent output Maximum efficiency when both electrical and thermal energy can be used

"Set-it-and-forget-it"

CHP system sizing Need to consider both electric and thermal load profiles

CHP system sizing When optimal CHP size is larger than the resilience need

- CHP system operates at maximum efficiency
- All generated thermal and electric energy can be used by the facility
- CHP system has capacity to power resilience loads

CHP system sizing When optimal CHP size is smaller than the resilience need

- CHP system operates at reduced efficiency
- Some thermal or electrical energy is wasted
- CHP system has capacity to power resilience loads, however this comes at the expense of efficiency

CHP Optimal system operation

- Electrical and thermal loads are closely matched
- Baseloads are consistent year round
- High energy costs which can be offset by onsite energy generation
- Resilience need is less than baseload and CHP system can load follow during utility outage

CHP payback results

System Payback 60% 50% Annual CO2 reduction (%) 30% 50% Site located in MLP 10% 0% 10 15 25 30 35 50 5 20 40 45 0 Payback in Years

[•] CHP

Solar + Storage example

Solar + storage basics

Maximize ROI (Business-as-usual):

Size solar to maximize ROI by minimizing export of PV energy

Size storage to reduce any remaining peak demand

Frequent charge/discharge cycles required to maximize revenue from energy storage

Maximize resilience:

Size solar to produce energy required for 24hour operation of resilience loads Size storage to power resilience loads once PV system is no longer generating energy

Solar + storage system sizing Maximize ROI

Facility load

Solar + storage system sizing Maximize ROI

Solar + storage system sizing Maximize ROI

Solar + storage system sizing Maximize ROI – Batteries allow larger PV system sizes

Hourly resilience load profile

Solar + storage system sizing Challenge

If energy required for resilience is higher than that required to maximize ROI, system will not fully monetize installed battery capacity

Solar + storage system sizing Challenge

If energy required for resilience is higher than that required to maximize ROI, system will not fully monetize installed battery capacity

Solar + storage system sizing Challenge

If energy required for resilience is higher than that required to maximize ROI, system will not fully monetize installed battery capacity

Solar + storage Optimal system operation

- Electrical load is high enough that a costeffective solar system can be installed
- Resultant peak demand is of short enough duration that a cost-effective energy storage solution can be installed
- High energy costs which can be offset by onsite energy generation
- Resilience need is less than optimal storage system size, or resilience load can be biased towards daylight hours

Solar + storage payback results

System Payback

Microgrid example

Microgrids

Basics:

- No common definition of a microgrid
- Typically have several distributed energy resources and can run isolated (islanded) from utility power

Use case:

- Used when combining several distributed generation assets
- Typically deployed on campus projects, however some of the smaller projects with several resources can be considered microgrids

Challenge:

• Does not provide an ROI by itself but can increase resilience and reduce reliance on human operators

Results

	Utility	СНР	CHP + TES	CHP + PV	CHP + PV + BES	PV	PV + BESS	Fuel Cell	Fuel Cell + TES	Wind	uG
Site 1	IOU	\checkmark	\checkmark					\checkmark	\checkmark		
Site 2	MLP	\checkmark					\checkmark				
Site 3	IOU	\checkmark		\checkmark	\checkmark		\checkmark				
Site 4	IOU	\checkmark		\checkmark	\checkmark		\checkmark				\checkmark
Site 5a	MLP						\checkmark				
Site 5b	IOU						\checkmark				
Site 6	MLP	\checkmark					\checkmark				
Site 7	MLP					\checkmark	\checkmark				
Site 8	IOU	\checkmark		\checkmark	\checkmark		\sim				
Site 9	MLP	\checkmark				\checkmark	\checkmark			\checkmark	
Site 10	MLP	\checkmark		\checkmark			\sim				\checkmark
Site 11	IOU										\checkmark

	Utility	СНР	CHP + TES	CHP + PV	CHP + PV + BES	PV	PV + BESS	Fuel Cell	Fuel Cell + TES	Wind	uG
Site 1	IOU	\checkmark	\checkmark					\checkmark	\checkmark		
Site 2	MLP	\checkmark									
Site 3	IOU	\checkmark		\checkmark	\checkmark		\checkmark				
Site 4	IOU	\checkmark		\checkmark	\checkmark		\checkmark				\checkmark
Site 5a	MLP										
Site 5b	IOU						\checkmark				
Site 6	MLP	\checkmark									
Site 7	MLP					\checkmark					
Site 8	IOU	\checkmark		\checkmark	\sim		\checkmark				
Site 9	MLP	\checkmark				\checkmark	\checkmark				
Site 10	MLP	\checkmark		\checkmark							\checkmark
Site 11	IOU										\checkmark

System Payback and GHG reductions

System Payback and GHG reductions

[●]IOU ●MLP

Top-down, bottom-up

Size system to maximize revenue and then determine resilience benefit which can be provided

Need to balance revenue operations with resilience needs

Maximize resilience Lessons learned & keys for success

Understanding your existing buildings and operations

Understanding how overall and individual energy systems work is critical to the development of strategies that can complement business-as-usual operations and enhance resiliency

Accurate facility data

The better the data, the more accurate and potentially viable the solution

Recognize the pros and cons of a volatile market

Project economics is a moving targets given changing technology costs and changing incentives

Identify priorities

Successful strategies will vary depending on how you prioritize your objectives

1 **Energy Security The Energy Trilemma** The three variables cannot be thought of independently Energy Energy Sustainability Affordability

Be flexible

Some resiliency is better than none

Resiliency can address a range of challenges leading to multiple strategies

Next Steps

