

Massachusetts Department of Energy Resources

NESEA PRESENTATION MASSACHUSETTS ENERGY STORAGE ACCOMPLISHMENTS & NEXT STEPS

March 15, 2019

AMY MCGUIRE

INTRODUCTION

- Amy McGuire
 - MA DOER. Emerging Technology Division Energy Storage and Resiliency Program Coordinator
 - Focused on:
 - Advancing Commonwealth Energy Storage (ACES)
 - Clean Peak Standard (CPS)
 - Community Clean Energy Resiliency Initiative (CCERI)
 - Various ongoing initiatives

Since launching our Energy Storage Initiative in 2015, Massachusetts has become a national leader for policies and programs for storage deployment

January 2019

National Ranking: #23

National Ranking*: #2

BENEFITS OF STORAGE

Recent advances in new storage technologies have made wide-scale storage of electricity possible

Historically the inability to store electricity (other than pumped hydro storage), required the power grid to be sized for the highest annual peak demand resulting in inefficiencies, underutilization of assets, and high cost.

Storage is "Game Changer":

- Allows use of energy generated during low cost periods to serve load during expensive peak
- Defers investment in transmission and distribution "wires", reduces need for "peaker" plants
- Enables wind and solar energy to be used when the sun isn't shining and the wind isn't blowing
- Provide resiliency during severe weather
- Benefits increase as we electrify transportation and thermal sectors

STORAGE IS A SOLUTION FOR INTERCONNECTING SOLAR

Storage can assist with the PV "Duck Curve" load profile

Storage can assist with PV reverse power flows and substation overloading

- After SMART is completed, over 4,000 MW of solar in MA
- MA has peak load of approximately 12,000 MW and minimum daytime load of approximately 6,000 MW
 - By 2022/2023, solar may meet 1/3 of peak load and 2/3 of min daytime load

Storage is a flexible resource that can assist with interconnection of DERs

KEY POLICY ACTIONS AND MILESTONES TO PROMOTE STORAGE DEPLOYMENT

<u>2016</u>

- DOER and MassCEC published the "State of Charge" Energy Storage Study
- Storage included in Comprehensive Energy Legislation
 - Defined storage, clarified utilities may own storage, authorized DOER to set target

2016/2017

- Funded Grant and Demonstration opportunities
 - **\$20 million Advancing the Commonwealth Energy Storage (ACES)** Program funded 26 storage projects to demonstrate multiple applications and use cases
 - \$40 million Community Clean Energy Resiliency Initiative, includes storage
 - \$4.6 million Peak Demand Reduction grants, includes storage
 - Utility demonstrations of storage in Energy Efficiency programs
 - Made eligible for Green Communities technical assistance grants

Sterling 2 MW / 3.9MWh ESS Community Resilience Grant

Holyoke 3 MW / 6 MWh ESS Peak Demand Grant

Braintree MLP 2 MW / 4.2 MWh ESS ESI-ACES Grant

KEY POLICY ACTIONS AND MILESTONES TO PROMOTE STORAGE DEPLOYMENT

<u>2017</u>

- DOER set 200 MWh Target for Storage in MA by Jan 1, 2020
 - 3rd state in nation to set a target for storage deployment
- DPU approved electric distribution companies proposals for utility storage
 - National Grid Owned Solar approved to pair with storage
 - Eversource rate case approved \$45 million for storage on Cape Cod & Martha's Vineyard
 - National Grid announces "non wires" solution to peak demand on Nantucket

<u>2018</u>

- DOER launched SMART solar incentive program with 1st in nation incentive "adder" for storage paired with solar
 - 135 projects with 70 MW/150 MWh of storage have submitted applications to date
- Legislation increased Storage Target to 1,000 MWh by 2025
- 1st in nation Clean Peak Standard announced
- Storage included in Next Three Year Statewide Energy Efficiency Plan 2019 2021, including specific goals for Active Demand reduction in Summer and Winter
- Eight standalone storage projects totaling 956MW submitted applications in the ISO-NE interconnection queue

MA STORAGE ECONOMIC DEVELOPMENT LANDSCAPE

Massachusetts Department of Energy Resources

Project Developers and Installers

BlueWave Borrego Lodestar Nexamp NextEra Solect SunBug Sunrun Syncarpha Tesla

Universities with **Storage Research**

BC BU Harvard MIT NEU Tufts Umass WPI

MA-based Storage Start-ups

24M Technologies **Acumentrics** Ambri **Beacon Power Boston Power** Exponent FastCap Systems **General Compression IHI Energy Kinetic Battery** Levisys Lithio Storage Mosaic Power Pellion Protonex SiEnergy Systems SparkCharge Sparkplug Power SolidEnergy Systems Solvus Global Vionx **Titan Advanced Energy** Xilectric WattJoule

Large corporations basing storage business in MA

Enel Green Power € 3B Revenue North American HQ Andover

Lockheed Martin \$51B Revenue **Energy Storage Division** Cambridge

NEC \$24B Revenue **Energy Solutions HQ** Westborough

Schneider

Schneider Electric € 25B Revenue North American HQ Andover

PRIORITIES & NEXT STEPS

DOER/MassCEC Storage Stakeholder discussion series

- Focus on project development issues: Interconnection, metering/telemetry, permitting and inspections, financing
- Potential working group (DOER/EEA/DPU/EDCs) to standardize distribution interconnection process

Continue to promote the pairing of Renewables with Storage

- Implement Clean Peak Standard
- Evaluate incentives for adding storage to pre-SMART solar projects
- Evaluate stronger requirements for pairing Solar and Storage in future SMART program
- Analyze ways to encourage storage + Off-shore Wind in DOER's OSW study

Review results of ISO-NE Capacity Auction

PRIORITIES & NEXT STEPS

Work with ISO-NE on rules for storage paired with renewables in the wholesale market

- Define process for adding storage to existing renewable generation
- Interconnection study methodology for storage paired with renewables
- Continue to promote use of storage in Distribution System Planning as "nonwires" alternative
 - Participate in National Grid's Rate Case
- Evaluate price signals/rate structures to align storage charging/discharging with policy goals to reduce system peak and improve system utilization
 - Explore EV time-of-use rate structures to promote charging off-peak
- Promote co-location of standalone storage with electric vehicle (EV) charging infrastructure
- Study long-term potential of new long-duration storage technologies, such as hydrogen "power-to-gas", breakthrough battery technology

Energy Storage as an Energy Efficiency Measure

Valuing storage for cost/benefit calculations The Massachusetts EE Plan

3/15/19

Todd Olinsky-Paul Project Director Clean Energy Group

State Policy Tools for Energy Storage

- 1. Studies and planning
- 2. Grants (demonstration projects)
- 3. Longer-term policy and programs
 - Utility mandates/procurement targets/portfolio standards
 - Incorporating storage into existing incentive programs (storage adders, storage as an efficiency measure)
 - Rebates/performance incentives
 - Tax incentives
 - Financing, clean energy financial institutions
 - Market-based tools and regulatory reform
 - Removal of barriers/soft costs
 - Technical assistance, tools, and resources

States Policy Landscape

- Studies/Roadmaps
 - CA, NY, MA, NM, RI, OR, VT, NJ, MN, MD, others
- Grants/Demonstration projects
 - NY, NJ, MA, CA, WA, OR, VT, CT, Others
- Longer-term programs
 - Utility procurement targets
 - CA, OR, MA, NY, NJ
 - Rebates/Other incentives
 - Rebates (CA, NJ, NY)
 - State tax incentives (MD)
 - Storage adder in solar incentive program (MA)
 - IRP reform (NM, WA)

Appendix B. Electric Efficiency Program Spending per Capita

State	2017 electric efficiency epending (\$ million)	\$ per capita	State	2017 electric stricency agending (\$million)	S per capita
Vermont	64.0	102.42	Arizone	115.4	18.65
Massachusetta	820,8	81.11	Miseouri	100.0	18.43
Rhode Island	83.4	78.95	Ohio	188.9	18.08
Connecticut	153.9	43.03	Hawaii	20.8	14.58
Oregon	158.8	38.75	Indiana	87,0	13.13
Weehington	281.8	38.67	Penneylvania	184.1	12,8
Ideho.	64.6	38.35	New Jersey	113.5	12.6
Celifornie	1,412.1	35.88	Montena	13.0	12.4
lowe	112.3	35.82	Wieconein	70.6	12.23
Maryland	201.5	33.50	Texas	257.7	9.25
Minnecota	165.0	28.89	Florida	190.3	9.23
Illinoia	349.1	27.27	Mississippi	27.8	9.23
Maine	31.1	23.38	Tennessee	52.5	7.88
Arkenese	68.6	22.86	West Virginia	14.2	7.7
New York	450.1	22.80	South Carolina	29.8	B.0:
Michigan	220.4	22.20	Ceorgia	55.5	5.3
District of Columbia	13.9	20.41	Nebracka	10.2	5.3
New Hampohire	28.1	18.55	South Dekote	4.4	5.0
Kentucky	84.7	19.09	Alabama	18.2	3.3
Delaware	182	19.08	Louisiana	7.3	15
New Mexico	38.7	18,60	VinSnia	0.1	0.03
Wyoming	10.5	17.88	Algoing		0.00
North Carolina	180.9	17.82	Kanese		0.0
Colorado	98.2	17.38	North Dekote		0.0
Nevada	51.0	17.34	UIS total	8,811.7	20.25
Uteh	51.4	18.85	Median	98.2	23.3
Oklehome	88.0	18.82			

Massachusetts Energy Efficiency Plan

- 3-year plan
- Budget > \$2 Billion
- First in the nation to include energy storage

In Massachusetts, two conditions needed to be met before storage could be included in the efficiency plan:

- 1. Redefining efficiency. In order to include storage within the energy efficiency plan, Massachusetts first had to include demand reduction, a major application of battery storage, within the efficiency plan. This underlying expansion of the Commonwealth's efficiency efforts to include demand reduction was formalized as early as 2008 with the Massachusetts *Green Communities Act*.
- 2. Showing that storage is cost-effective. In order for energy storage to qualify for the efficiency plan, it first had to be shown to be cost-effective. This meant that storage had to be able to pass a Total Resource Cost (TRC) test with a benefit-cost ratio (BCR) equal to or greater than 1. This was demonstrated in our July, 2018 white paper (see A cost/benefit analysis for energy storage, below).

1. Redefining efficiency

- Traditionally, electrical efficiency is defined as "using fewer electrons"
 - Storage does not normally qualify due to round trip losses
- Massachusetts expanded the traditional definition of efficiency to include peak demand reduction
 - Storage is well-suited to shifting peak demand, something traditional passive efficiency measures don't do

Key concept: Not all load hours should be valued the same

Peak demand reduction reduces peaks, but does not reduce net consumption

The monetizable value of storage is partly due to the high costs of our oversized grid

From Massachusetts State of Charge report

Case: Boston Medical Center

Project Economics

Baseline Capacity Charges

Eversource T&D charge:

Summer = \$24.82/kW Winter = \$18.86/kW

ISO-NE Capacity Cost (icap) charge: \$9.96/kW-month

Total: Hospital is currently paying annual demand costs of \$1,247,000

Project goals:

- Resiliency
- cost savings
- power quality

Redefining efficiency

Massachusetts *Green Communities Act of 2008* requires that efficiency program administrators seek "...all available energy efficiency and demand reduction resources that are cost effective or less expensive than supply."

-Massachusetts state law, M.G.L. c.25, §21

Massachusetts *State of Charge* report of 2016 notes that "Storage and other measures that shift load are firmly covered by the intent of the [Green Communities] Act" and adds, "The 2016-2018 Statewide Energy Efficiency Investment Plan ("Three Year Plan") identifies peak demand reduction as an area of particular interest in the term sheet and in the EEAC resolution supporting the Three Year Plan.... Energy storage, used to shift and manage load as part of peak demand reduction programs, can be deployed through this existing process."

2. Showing that storage is cost-effective

To qualify for state energy efficiency plans, storage must pass a cost/benefit test

Table 17. Total benefits and costs

Parameter for 2019	Low- Income	C&I
Total Electric Benefits (\$)	\$36,296	\$155,782
Total Resource Cost (\$)	\$13,163	\$46,322
Benefit-Cost Ratio	2.8	3.4

Source: Applied Economics Clinic calculations

CEG published independent economic analysis – July, 2018 21

Storage BCRs from Massachusetts EE plan PAs

NOTE: These numbers do not include non-energy benefits!

BCRs	c	apelig	1	E	ersoun	ce.	Na	tional G	rid	Uniti		
0	2019	2020	2021	2019	2020	2021	2019	2020	2021	2019	2020	2021
Residential Advanced Demand Ma	an age m	ie nt Pro	gram (A	(20)								
Program BCRs	1.6	2.4	2.4	1.0	2.4	1.6	1.5	2.4	2.5	0.7	1.1	1.2
Direct Load Control	4.9	6.6	7.4	5.0	5.0	5.0	5.3	5.5	5.3	5.2	9.6	9.6
Behavioral DR												
Storage System and Performance		3.0	3.0									
Storage Daily Dispatch				1.5	1.5	1.5	4.9	4.9	5.0			
Storage Targeted Dispatch				0,0	0,0	0.0	0.1	1.0	0.1			
EV Load Management								0.8	0.8			
Income-Eligible Advanced Deman	d Mana	emen	t Progra	m (81b)						1		
Program BCRs		2.3	2.4					2.4	2.4			
Direct Load Control												
Behavioral DR												
Storage System and Performance		3.0	3.0									
Storage Dally Dispatch												
Storage Targeted Dispatch												
EV Load Management												
Commercial/Industrial Advanced i	Deman	d Manaj	ement	Program	n (C24)				-			
Program BCRs	7.5	4.6	47	2.9	2.9	2.8	7.9	4.8	4.9	2.7	2.9	31
Interruptible Load	9.7	9.8	9.8	7.9	7.9	7.9	7.5	7.5	7.5	4.2	42	4.2
Winter Interruptible Load												
Storage System and Performance		3.0	3.0									
Storage Daily Dispatch				1.7	1.7	1.7	4.9	4.9	5.0	6.2	6.2	6.2
Storage Targeted Dispatch				3.2	3.2	3.2	0.1	1.0	0.1	0,1	0.1	0,1
Custom	8.3	8.3	8.3		2.0	2.0	1.3	1.3	1.3			

Massachusetts Energy Efficiency Plan Incentive Structure

- Three year plan > \$2 Billion (electric and gas)
- Storage measures are in new Active Demand Reduction program
- Incentive is for performance (load reduction), not installation
- New BTM storage is eligible (with or without renewable generation)
- Residential and commercial customers may participate
- Two programs offered:
 - Daily discharge \$200/kWh (demonstration program)
 - Targeted discharge \$100/kWh (full program offering)
- Incentive payment based on *average load reduction* during hours called by utility
- Discharges will be called in *three hour blocks*
- Incentive paid at end of each year
- Utilities execute 5-year contract with customers
- HEAT loans available for storage

Anticipated Results (Deployment)

- Massachusetts 2019-2021 Energy Efficiency Plan includes BTM storage as a demand reduction measure
- Incentive payments = **~\$13 million** over three years
- Expected results = ~34 MW new behind-the-meter storage

Shortcomings:

- No enhanced incentive, financing or carve-out for low-income customers
- No up-front **rebate**
- Daily discharge proposal downgraded to demonstration program
- Cape Light Compact proposal was NOT approved as proposed
- Numerous omissions mean storage BCRs are likely too low

Project Economics Example

A commercial customer participating in the targeted dispatch program installs a 30 kW battery. Assuming perfect call response:

30 kW battery = 10 kw/hr load reduction averaged over 3-hour calls

Incentive payment calculation: 10 kW x \$100 = \$1,000 annual incentive payment

Note: a customer installing new solar+storage could qualify for energy efficiency performance incentive *and* the SMART solar rebate with storage adder

Customers can participate in these programs while engaging in net metering *and* demand charge management

Upcoming Report

New report to be published April 2019 by Clean Energy Group

New report does four things:

- 1. Revises **battery storage BCR** for Massachusetts
- 2. Reviews and critiques new storage incentive in MA efficiency plan
- 3. Identifies issues and makes **recommendations for other states** to incorporate storage in efficiency plans
- 4. Assigns, for the first time, dollar values to **seven non-energy benefits of storage**
 - a) Avoided power outages (combines value to customer and value to grid)
 - b) Higher property values
 - c) Avoided fines
 - d) Avoided collections and terminations
 - e) Avoided safety-related emergency calls
 - f) Job creation
 - g) Less land used for power plants (expressed in acres)

	Non-Energy Benefit (2018\$)				
1) Avoided power outages					
Battery storage measure participants avoid outages, and all of the costs that come with outages for both families and businesses	Residential: \$1.72/kWh Commercial/Industrial: \$15.64/kWh				
2) Higher property values					
Installing battery storage in buildings increases property values for storage measure participants by: (1) increasing leasable space; (2) increasing thermal comfort; (3) increasing marketability of leasable space; and (4) reducing energy costs	\$5,325/housing unit for low-incom single family participants \$510/housing unit for owners of multi-family housing				
3) Avoided fines					
Increasing battery storage will result in fewer power outages and fewer potential fines for utilities	\$24.8 million in 2012				
4) Avoided collections and terminations					
More battery storage reduces the need for costly new power plants, thereby lowering ratepayer bills, and making it easier for ratepayers to consistently pay their bills on time. This reduces the need for utilities to initiate collections and terminations	Terminations and Reconnections: \$1.85/year/participant Customer calls: \$0.77/year/participant				
5) Avoided safety-related emergency calls	Construction from				
Increasing battery storage results in fewer power outages, which reduces the risk of emergencies and the need for utilities to make safety-related emergency calls	\$10.11/year/participant				
6) Job creation					
e battery storage benefits society at large by creating jobs in 3.3 jobs/MW ufacturing, research and development, engineering, and installation \$310,000/MW					
7) Less land used for power plants					
More battery storage reduces the need for peaker plants, which are more land-intensive than storage installations—benefitting society by allowing 12.4 acres /MW more land to be used for other purposes					

Todd Olinsky-Paul Project Director CEG/CESA

Email for new report: <a>Todd@cleanegroup.org

CEG webinar on new report: April 4, 12:30 p.m. Webinar is free, register at <u>http://bit.ly/CESA-Webinar-4-4-19</u>

Website: www.resilient-power.org

Utility markets: capacity and transmission cost reductions

Increased solar production is reducing midday demand for grid power

Source: CallSO

Year	Price (\$/kW-Month)
2010-2011	\$4.254
2011-2012	\$3.119
2012-2013	\$2.535
2013-2014	\$2.516
2014-2015	\$2.855
2015-2016	\$3.129
2016-2017	\$3.150
2017-2018	\$7.025
2018-2019	\$9.551

SMLD Capacity Clearing Price, ISO-NE.

Result:

Electricity demand = flat or decreasing Capacity demand = increasing

Behind the Meter Markets

- Demand Charge Management
- Resiliency

Demand Charge Management:

Commercial customers pay as much as **50%** of their monthly electric bill for demand charges

Energy storage can reduce demand charges by managing peak demand

State policy example: Massachusetts Energy Storage Initiative

CENTER

- Current Policy/Programs
 - CCERI \$40M resiliency grants (2014-2017)
 - Energy Diversity Act (2016)
 - Utilities can own storage
 - DOER to assess need for utility procurement target
 - State of Charge report (2016)
 - State energy storage roadmap and analysis; recommendations for energy storage policy and program development
 - ACES \$20M Energy Storage Demonstration Grants (2017)
 - SMART Solar Incentives with storage adders
 - Procurement Target 1,000 MWhs by 2025
 - Storage added to EE plan (2019-2021)

Policy/programs in development

- Clean Peak Standard
- Microgrids program
- Resilient fueling stations program
- Grid modernization
- Storage inclusion in Alternative Portfolio Standard

With federal and foundation support, CEG/CESA is providing free technical assistance to DOER awardees for project implementation, as well as to DOER and MassCEC for policy and program development; and we are extending this policy support to the other New England states.

First National Survey of Demand Charge Rates

Based on a survey of more than 10,000 utility tariffs, *Nearly 5 million commercial customers may be paying more than \$15/kW in demand charges*

Figure 1. Number of commercial electricity customers who can subscribe to tariffs with demand charges in excess of \$15/kW.

Boston Medical Center

Baseline Capacity Charges

1,060 kW / 2,120 kWh battery connected to existing CHP

Project goals:

- Resiliency
- cost savings
- power quality

Eversource T&D charge:

Summer = \$24.82/kW Winter = \$18.86/kW

ISO-NE Capacity Cost (icap) charge: \$9.96/kW-month

Total: Hospital is currently paying annual demand costs of \$1,247,000

Project Economics:

- Project Installed Cost: \$1.9 M
- MassCEC Grant: \$402,500
- Annual Savings: \$200,000

Simple Payback: 6.5 years