

Smart Homes & Sustainability: Putting Data into Practice

Claire Miziolek, Technology and Market Solutions Senior Manager Northeast Energy Efficiency Partnerships (NEEP) BuildingEnergy Boston 3/15/2019

About Northeast Energy Efficiency Partnerships (NEEP)

"Assist the Northeast and Mid-Atlantic region to reduce building sector energy consumption 3% per year and carbon emissions 40% by 2030 (relative to 2001)"

Mission

We seek to accelerate regional collaboration to promote advanced energy efficiency and related solutions in homes, buildings, industry, and communities.

Vision

We envision the region's homes, buildings, and communities transformed into efficient, affordable, low-carbon, resilient places to live, work, and play.

Approach

Drive market transformation regionally by fostering collaboration and innovation, developing tools, and disseminating knowledge

One of six REEOs funded in-part by U.S. DOE to support state and local efficiency policies and programs.

Agenda

- (The Who)
- The Why
- The What
- The State of things
- <u>The What you can do about it</u>
- The Discussion

Introductions: You!

show of hands

Introductions: me (and why I'm talking to you today!) NEEP's background in the Smart Energy Home

2018

2019

The Why: Driving Towards Decarbonization

Region's Aggressive Carbon Reduction Targets

Are we on the path to 80% CO2 reductions?

• Not without strategic electrification, we aren't!

Electrification sounds great, but... Shifting *seasonal* load shape over the next 30 years

How the Smart Energy Home can drive residential decarbonization

• Electric loads of homes will grow.

Step :

Step 3

Step 4

Step 5

• Many end-use loads can be **shifted** to be used or charged at strategically beneficial times.

• **Renewable generation** is growing, but it is more variable.

• Flexible end uses are critical to managing this growing electric need.

• "Smart" technologies can manage this "generation-toload" matching.

- Customers are buying many smart products
- Many smart devices have lower barrier to entry than other major EE investments
- Many opportunities for integration and matching

The What: The Smart Energy Home

What is Smart?

- (NEEP's definition) "smart": have a chip/connection, and a mechanism to know what to do with it!
- **Ideally**, smart devices have this functionality:
- Most importantly, they can <u>send</u> data and signals about their operations as well as <u>receive</u> and interpret signals dictating their operations.

Most "smart" homes today

ne ep

Just around the corner...

no op

Add Key Strategic Electrification Considerations

ne ep

Bring in the Distributed Energy Resources and Connectivity

-

The Vision of the Smart Energy Home of the Future!

9

We've got goals, Baby!

Regional Market Transformation goal NEEP set forward in our <u>2016 Market Transformation</u> <u>report</u>

By 2030, more than <u>50%</u> of total homes (75% of new construction) in the Northeast and Mid-Atlantic have <u>at least two "energy smart" major</u> <u>systems</u> (HVAC, water heating, plug load/appliances). This means they:

Can drive other home improvements through a feedback mechanism

Optimize major system energy savings

Can optimize devices for the grid (through time-of-use pricing, load shifting, demand response) Can optimize distributed energy resources

The State of Things

State of the Market: Opportunity for savings?

• <u>NYSERDA Pilot findings</u> for energy savings

• Heat chart of opportunity

Smart Product	EE	DR	Load shifting	DER integration
Smart Thermostat/Smart HVAC				
Smart Water Heater				
Smart Appliances: Flexible timing (clothes dryers, clothes washers, dishwashers, refrigerator?)				
Smart plug, outlet, or switch				
Smart Home Platform/hub/display				
Smart Appliances: Inflexible timing (stoves, ovens, small appliances)				
Smart Lighting				

Table S-1. Base-Load Simulation Model Maximum Annual Savings Potential by End Use

Smart Device	Electricity Savings (kWh/year)	Heating Fuel Savings (therms/year)	Cost Savings* (\$/year)	Assumptions
Smart Thermostat	688	52	\$174	No existing setback controls
Smart Outlets	341		\$58	15-minute occupied delay
Smart Lamps or Switches	212		\$36	Controls only
Total HEMS Savings	1,241	52	\$268	

State of the Market: What's hot in the smart home?

Smart Speaker and Smart Thermostat Projected US Ownership

- Utilities are loving smart thermostats
 - especially ENERGY STAR

SMUD

- Customers are loving voice control ightarrow
 - Recent <u>E-Source Report</u>

State of the Market: What about the Smart Energy Home?

- More **smart** products across the board
 - Growing, but still low rates
- Residential **solar** steadily growing
- EVs increasing in demand
- Low rates and limited availability of residential storage
- Air Source Heat Pumps slowly getting connected (i.e. D6, MassSave rebates)
- Water heating steadily getting smarter
 - Retrofit (i.e. Aquanta)
 - Built in (i.e Econet)
 - Port (i.e. CTA-2045)
- Installation through DIY, DIFM, and "ready" at construction

ENERGY STAR Connected Products

Product Category	% connected models November 2018
Clothes Dryers	3.7%
Clothes Washers	1.6%
Dishwashers	0.7%
EV Supply Equipment	29%
Freezers	2.5%
Light bulbs	0.4%
Light Fixtures	1.2%
Refrigerator	3.4%
Room AC	1.9%

The State of Data: Real Time Data Driven Measurement and Verification (M&V 2.0)

- Example: CT pilot (funded by US DOE) with utilities, CT energy department, Lawrence Berkeley National Lab, and NEEP
- Looking to take large set of data from homes and run through advanced analytical tools to measure energy savings (from whole-home retrofits) and insights into program performance

What you can do about it! Moving to Practice

Putting Data to use from the Smart Energy Home

- Lots of sources
 - Practitioner benefits
 - Engaging with customers
 - Better understanding or work
 - Tracking longer term operations
- Improved performance
- System alerts *before* it fails
- EM&V improvements for programs
- Software vs. Hardwire

DERS: Getting to the "ready" home

EV ready—guidance exists

- ENERGY STAR offers SMART EVSE
- Building blocks to EV-Ready:
 - 240V 40 amp dedicated breaker
 - 240V dedicated socket
 - Installed in garage or on the property.
 - Now "ready" to plug in the EV charger.
- Study in NW found Average price to make homes EV Ready was \$200
- Solar ready:
 - Location (south, low shade)
 - Access (utility room, chimneys, obstructions)
 - Wiring (3/4" conduit)
 - Smart inverter? CA's doing it! (rule 21)
- Storage ready? Location and power considerations

It's Electric! Ready for Electric HVAC, Water Heating, and more!

- ASHP provide heating *and* cooling
 - Do you want a backup heat source?
- HPWHs need more space
 - ideally conditioned and away from main living areas
- Construction to supports air flow and (smart) ventilation
- Select smart appliances from the start
 - Need strong wifi!
- Smart outlets? Plugs?
 Jury still out

Conclusion, Resources, and Discussion

• The Smart Energy Home is (almost) here!

- You can help make it a reality!
- More Resources:
 - <u>HPC smart homes track</u>! Right there in Chicago
 4/1-4/4!
 - Including 9 session track and contractor training
 - HEMS Working Group—let me know if you want to talk more
 - NEEP <u>Webinar series</u> and <u>NEW report</u>
- Let's talk more!

THANK YOU!

Claire Miziolek <u>cmiziolek@neep.org</u> 781-860-9177 x115

81 Hartwell Avenue Lexington, MA 02421 P: 781.860.9177 www.neep.org

Backup Slide(s)

How are we using fossil fuel now? Direct Use in New York and New England

4.2 Quadrillion BTUs per year of direct fossil fuel use Residential sector uses ~1/4 of fossil fuel

