

Building Decarbonization

Darren Port, Buildings & Community Solutions Manager Northeast Energy Efficiency Partnerships (NEEP)

Building Energy NESEA Conference, Boston, MA March 14, 2019

About Northeast Energy Efficiency Partnerships

"Assist the Northeast and Mid-Atlantic region to reduce building sector energy consumption 3% per year and carbon emissions 40% by 2030 (relative to 2001)"

Mission

We seek to accelerate regional collaboration to promote advanced energy efficiency and related solutions in homes, buildings, industry, and communities.

Vision

We envision the region's homes, buildings, and communities transformed into efficient, affordable, low-carbon, resilient places to live, work, and play.

Approach

Drive market transformation regionally by fostering collaboration and innovation, developing tools, and disseminating knowledge

NEEP Region Building Carbon Emissions

Regional Commitments

ne ep

Are we on the path to 80% by 2050? 17% change 76% change

——Historic Carbon Emissions – – Trajectory to 80% by 2050 – – Trajectory to 40% by 2030

Source: Historic carbon emissions data from EIA, trajectory calculated based on regional carbon levels in 2001

Direct Use of Fossil Fuels (NE/NY)

SIZING UP THE CHALLENGE: Efficiency Retrofits + Electrify Heating New York & New England

- 14.6 million homes
- 20% of regional carbon emissions
- 75% built before 1980
- 80%+ need:
 - + Efficiency retrofits and associated improvements
 - + Heat pumps
 - = \$5,000 \$30,000 per home
- Cost: \$200 billion +
- Multiple Benefits health, comfort, safety, resilience

\$13 Billion Annual Regional Spend on Home Heating Fuels

Data Sources – US Census Bureau and US DOE Energy Information Administration

C

Building Decarbonization – 3 Key Elements

NEEP's analysis points to three critical elements to a strategic electrification pathway that benefits consumers, businesses and the environment. These are:

Advanced Electrification Technologies

evercitric arive

ng

Public Policies to Accelerate Building Decarbonization

ne ep

- Statewide Carbon Reduction Goals
- Utility Regulation
 - Rate Design
 - Efficiency Programs total building performance, all fuels, low carbon
 - Smart Buildings & Grid investment
- Building Standards
 - Advanced Building Energy Codes
 - Building Energy Rating & Disclosure
 - Time-of-sale or lease building improvements

- Community Leadership

 Supported by state efforts
- Supporting Policies
 - Renewable Energy
 - Energy Storage
 - Lead-by-Example
 - Workforce Development
 - Financing
 - Policy Linkages
 - Energy Affordability
 - Health Care
 - Community & Economic Development

Highlights of Regional Policy/Program – Buildings Decarbonization

VERMONT

- Incentives for ASHPs and HPWHs through Efficiency VT and utilities
- Tier 3: GMP ASHPs and HPWHs for RES compliance
- Montpelier Building Energy Standards & Disclosure new and existing homes & buildings

NEW YORK

- New York REV Policy
- NYSERDA Clean Energy
 Investment Plan
- NYSERDA & utility Heat Pump
 Incentives
- Workforce Development
- NYC Multifamily Retrofit & Heat PU,

CONNECTICUT

- Heat pump rebates available through Energize CT
- Home Energy Scores
- DOE ZERH

NEW HAMPSHIRE

- Developed first-in-nation
 RPS carveout for
 renewable thermal
- ASHP and HPWH rebates from individual utilities

MAINE

Significant uptake in residential ASHP/HPWH through Efficiency Maine rebate and financing programs (over 20,000 rebates FY14-FY16)

MASSACHUSETTS

- Renewable thermal energy into Alternative Portfolio Standard
- ASHP, GSHP, and HPWH rebates via state and utility programs
- Solarize Mass Plus will include heat pumps, EVs, and storage
- Expanded cost-benefit test to recognize health, safety, comfort values of deep efficiency

RHODE ISLAND

- ASHP Incentives, Building Energy Rating
- Exploring workforce development programs to drive heat pump uptake (e.g. engaging delivered fuel dealers)

New – Newsletter & Pod Cast

Building Decarb Central

TECHNICAL PARTS AND POLICY PIECES FOR A DECARBONIZED BUILT ENVIRONMENT

Subscribe https://neep.us3.list-manage.com/subscribe?u=efc742661f1436c5f27ab78ba&id=d09b004d10

For information on how to partner, they can email Dave Hewitt (<u>dhewitt@neep.org</u>) or Sue Coakley (<u>scoakley@neep.org</u>) 12

NEEP Resources

- NEEP's Strategic Electrification Resource Center: http://www.neep.org/initiatives/strategic-electrification
- Strategic Electrification Resource Catalog: <u>http://www.neep.org/sites/default/files/NEEP%20Strategic%20Electrification_Resource%20Catalogue_Updated%20April%202018.pdf</u>
- Action plan to Accelerate Strategic Electrification in the Northeast and Mid-Atlantic: <u>http://neep.org/reports/strategic-electrification-action-plan</u>
- Regional Assessment of Strategic Electrification Report: <u>http://www.neep.org/reports/strategic-electrification-assessment</u>
- 2017 Strategic Electrification Summit: <u>http://www.neep.org/events/2017-</u> regional-strategic-electrification-summit
- Northeast/Mid-Atlantic ASHP Market Transformation:
 - Regional High Performance Heat Pump Project & Working Group: <u>https://neep.org/ashp</u>
 - Regions ccASHP Market Transformation Strategy: <u>http://www.neep.org/sites/default/files/NEEP_ASHP_2016MTStrategy_Report_FINAL.pdf</u>
 - Cold Climate ASHP Product List: <u>https://neep.org/initiatives/high-efficiency-products/emerging-technologies/ashp/cold-climate-air-source-heat-pump</u>

For more information: <u>www.neep.org</u> Phone: 781-860-9177

Darren Port, Buildings & Community Solutions Manager <u>dport@neep.org</u> - ext. 132

> Dave Lis Director of Technology & Market Solutions <u>djlis@neep.org</u> – ext. 127

Carolyn Sarno Goldthwaite Director of Building & Community Solutions <u>cgoldthwaite@neep.org</u> - ext. 119

THE RACE TOWARDS CARBON NEUTRALITY: DRIVERS AND BARRIERS

March 14 , 2019

Massachusetts Department of Energy Resources

electric energy

gas energy

Last 50 years of Code:

all saved energy (saved BTUs) are the same

50,000-sf	multifamily
-----------	-------------

<mark>\$1/therm</mark> \$0.20/kWhr

		*
Annual Cost	Space heating and hot water with Gas	Space heating and hot water with electric heat pumps
Gas	\$14,000	\$0
Electricity	\$52,000	\$85,000
Total	\$66,000	\$85,000
	least cost	

17

50,000-sf	multifamily
-----------	-------------

<mark>\$1.50/therm</mark> \$0.20/kWhr

		*
Annual Cost	Space heating and hot water with Gas	Space heating and hot water with electric heat pumps
Gas	\$21,000	\$0
Electricity	\$52,000	\$85,000
Total	\$73,000	\$85,000
	least cost	

18

Idea	Implementation into Code
Not all Btus are the same	Emissions basis, not Btu basisRecognize future grid emission rates
Electrify space and water heating	Heat pump space heatingHeat pump water heating
Enabling Steps to Electrify	 Heating peak limits (btu/sf-hr); total heat limits (btu/sf-yr) Envelope backstop

March 14, 2019

PAYETTE

NESEA Building Energy Boston The Race Toward Decarbonization

Elizabeth Galloway PE, CEM, CPHD, WELL AP, LEED AP BD+C

FUSION OF DESIGN + PERFORMANCE
CARBON FREE BOSTON SUMMARY REPORT

CARBON FREE BOSTON SUMMARY REPORT

ENERGY USE INTENSITY

Average EUI of office buildings constructed since 2007

35-150 Kbtu/sf-vr

RELATIVE VERSUS ABSOLUTE METRICS

Core and Shell Office

250,000 SF

8 Stories

LEED 2009

ENVELOPE INFLUENCE ON ENERGY

ENVELOPE INFLUENCE ON ENERGY

HEAT LOSS

COMFORT | THERMAL COMFORT FACTORS

- Radiant Temperature
- Air Speed

COMFORT | MECHANICAL CONTROL

• With large expanses of glass perimeter heating is needed to counteract these factors and maintain comfort

SOLAR GAIN

ENERGY | IMPACT ON LOADS

DAYLIGHT | HOW MUCH GLASS DO WE REALLY NEED?

EFFECTIVE OVERALL R-VALUE

THERMAL BRIDGING – EXISTING MASONRY WALL ASSEMBLIES

Building 1- studs directly attached to existing wall → resulting in a decrease of 59% of baseline R-value

Calculated R-Value= 19.53

Observed R-Value= 4.15

Simulated R-Value= 8.05

THERMAL BRIDGING – EXISTING MASONRY WALL ASSEMBLIES

Building 2- studs pulled 1" back from existing wall → results in a decrease of 16% of baseline R-value

Baseline R-Value= 16.84

Observed R-Value= 12.44

Simulated R-Value= 14.11 (

THERMAL BRIDGING – EXISTING MASONRY WALL ASSEMBLIES

Building 3- studs separated from insulation → resulted in a decrease of 2% of baseline R-value

Baseline R-Value= 29.23

Observed R-Value= 20.16

Simulated R-Value= 28.78

THERMAL BRIDGING – EXISTIGN MASONRY WALL ASSEMBLIES

AIR TIGHTNESS

- Passivehaus Feasibility Study by fxcollaborative
 - 86% reduction in infiltration compared to the base case
 - Base case 0.263 cfm/ft² @ 50 Pa (ASHRAE 90.1-2010 0.4 cfm/ft² @ 75 Pa)
 - Proposed case 0.036 cfm/ft2
- Cornell Tech Tower
 - 0.14 ACH50 (PH reqt 0.6 ACH50)
- "% Better Than" approach models infiltration the same in the baseline and proposed case

CONNECTING ENCLOSURE PERFORMANCE TO HVAC SYSTEMS

OPTIMIZING MASSING | SOLAR BENEFIT STUDY

6% Reduction in patient room energy

15% Reduction in peak solar load

54% Decrease in direct solar radiation

PARAMETRIC EARLY ENERGY MODEL

INPUTS:

- Glazing Ratio (40%, 50%, 60%, 70%)
- R-Value (spandrel, solid)
- Glazing U-Value (0.4, 0.25)
- Exterior Vertical Fins (0", 15", 30")
- Orientation
- HVAC Type (VAV, Hydronic)

= 576 SIMULATIONS

OUTPUTS:

- EUI
- Peak Cooling
- Peak Heating
- HVAC Size

THE IMPACT OF CHILLED BEAMS

CHILLED BEAM COOLING CAPACITY

ITERATING THROUGH DESIGN OPTIONS

Time During the Cooling Design Day

ITERATING THROUGH DESIGN OPTIONS

Time During the Cooling Design Day

ENERGY SAVINGS FOR OPTIMIZED DESIGN

BOSTON HOSPITALS ENERGY USE INTENSITY (EUI) – KBTU/SF-YR

Boston Hospitals

SUMMARY

- Current standards and policies are not resulting in the necessary levels of energy performance necessary to meet our climate goals
- Absolute metrics are more useful if our goal is actual emissions reductions
- Enclosure design is critical for
 - Reducing peak loads
 - Eliminate perimeter heating
 - Enabling low energy HVAC design including allelectric systems
- "Passive house like" that is building type appropriate

Decarbonization & Codes for New & Existing Buildings

Darren Port, Buildings & Community Solutions Manager Northeast Energy Efficiency Partnerships (NEEP)

Building Energy NESEA Conference, Boston, MA March 14, 2019

Decarbonization Plan

Action Area #1

Establish Goals, Policies, and Programs for Strategic Electrification with Deep Efficiency

- Create market certainty through targets, goals, and mandates
- Lead by example
- Adopt building energy codes (New & Existing)
- Create mechanisms to support local government
- Develop metrics for clean energy programs

2030

2040

2050

Leading states that have regularly adopted the energy code and set policies with an eye toward zero energy can achieve requirements for ZEB retrofits/new construction. All **existing** buildings will have been **retrofitted** through programs or initiatives that address efficiency.

All **new** buildings will be **designed** to achieve zero energy.

Codes Toward Decarbonization

• NEEP Region

- All 13 States Moving Toward "Modern" Code
- Six States with Advanced Stretch Codes (MA, RI, VT, NY, DC, MD)
- DC (Omnibus Act 2018), NYC, NY, VT, RI, MA States on Track to ZE Codes
- Massachusetts Achieving Zero Energy (MAZE)
- Trends Toward Strategic Electrification (New & Existing Buildings)
 - PV Ready
 - EV Ready
 - ASHP (Ready)
 - Battery Storage
 - Lighting Power Density Reduction
 - Alternative Compliance Paths
 - Passive House; Living Building Challenge; DOE ZERH

BUILDING ENERGY CODE ADOPTION

March 2019

Codes Toward Decarbonization

ne ep

• Nationally

- States:

- Washington
 - Performance Based Codes / Stretch Codes
 - 1631 Carbon Emissions Fees (Defeated)
- California
 - CEC Title 24 2020 residential buildings zero energy, 2025 commercial Buildings; ASHP, Storage, Thermal Efficiencies
 - SB1477 (Sept 2018) Near zero technologies buildings
 - 20+ cities (LA, San Jose) exceeding CEC codes with reach codes.
- Cities:
 - NYC, DC, Denver, Boulder, Seattle, Atlanta and Chicago
- ICC 2021 IECC Code Hearings

ne ep

nc cp Building Energy Codes for a Carbon Constrained Era: A Toolkit of Strategies and Examples

December 2017

www.neep.org/building-energy-codes-carbon-constrained-era-toolkit-strategies-and-exanaples

For more information: <u>www.neep.org</u> Phone: 781-860-9177

Darren Port, Buildings & Community Solutions Manager <u>dport@neep.org</u> - ext. 132

> Dave Lis Director of Technology & Market Solutions <u>djlis@neep.org</u> – ext. 127

Carolyn Sarno Goldthwaite Director of Building & Community Solutions <u>cgoldthwaite@neep.org</u> - ext. 119

BUILDING ENERGY POLICY IN NYC

Gina Bocra, AIA, LEED Fellow

NYC BUILDING ENERGY POLICIES

Local Law 66 of 2014 (80x50)

Set the goal for the city of New York to reduce greenhouse gases by eighty percent by 2050.

Pathways for Reductions in Greenhouse Gas Emissions from Buildings

Source: New York City Mayor's Office of Long-Term Planning and Sustainability

NYC BUILDING ENERGY POLICIES

Base Legislation in NYC

Photo by G. Bocra

- Local Law 85 of 2009 requires the NYC Energy Conservation Code
- Local Law 84 of 2009 requires annual energy and water benchmarking for buildings 25K SQ.
 FT. and greater
- Local Law 87 of 2009 requires energy audits and retro-commissioning in buildings 50K SQ FT and greater (every 10 years)
- Local Law 31 of 2016 sets aggressive energy targets for City-funded capital projects

NYC BUILDING ENERGY POLICIES

Recent policy changes

Photo by G. Bocra

- Local Law 32 of 2018 mandates a much more stringent energy code in 2019, 2022, and 2025
- Intro 1253 mandates GHG limits for buildings 25,000 Sq. Ft. and greater beginning in 2022

NYC'S LOCAL LAW 32 OF 2018

2019 and 2022- NYC must adopt the NYStretch Energy Code

- NYStretch Energy Code is about 4-5% more stringent than NY State's 2019 Energy Code is expected to be (based on 90.1-2016)
- Includes an envelope backstop for projects following the performance path that are 25,000 SQ. FT. and greater

2025- NYC must adopt an absolute limit for energy consumption in buildings (EUI targets or some other metric)

- Applies to all buildings 25,000 SQ. FT. and greater

https://legistar.council.nyc.gov/LegislationDetail.aspx?ID=30 66695&GUID=CBC9F654-EC3E-4CC8-BA14-CEED2C744414&Options=ID|Text|&Search=energy

NYC'S INTRO. 1253 OF 2018

Building GHG limits- Establishes absolute limits for GHG emissions from buildings 25K SQ. FT. and greater

- Bill establishes limits, penalties and fines, beginning in 2022
- This law is co-sponsored by over half of the members of City Council, and is expected to become law in April.

https://legistar.council.nyc.gov/LegislationDetail.aspx?ID=37 61078&GUID=B938F26C-E9B9-4B9F-B981-1BB2BB52A486&Options=ID[Text]&Search=energy

