NYC's High Performance Retrofit Program and Resources

BuildingEnergy NYC September 26, 2019

Aaron Ordower Assistant Deputy Director Mayor's Office of Sustainability - New York City

Larry Katz Energy Engineer, NYC Accelerator Program

> **Rebecca Esau** Project Associate Building Energy Exchange

Ryan Cassidy Director of Sustainability & Construction RiseBoro Community Partnership

OneNYC 2050

30 initiatives across 8 goals to secure our city's future

Key commitments from A Livable Climate:

- Achieve carbon neutrality and 100% clean electricity
- Require buildings to cut their emissions
- Hydro-power City government

Key Findings about Building Energy Use

- Greatest absolute number of buildings: 1-4 family homes
- Greatest share of GHG emissions:
 Commercial and multifamily buildings

Climate Mobilization Act

LOCAL LAWS 92 AND 94

requiring that the roofs of certain buildings be covered in green roofs or solar PV systems

LOCAL LAW 95

a building energy efficiency grade

LOCAL LAW 96

establishing a sustainable energy loan program (i.e. PACE)

LOCAL LAW 97

the commitment to achieve certain reductions in greenhouse gas emissions by 2050

LOCAL LAW 95

a building energy efficiency grade

	Display Energy Gerifflante Haw efficiently is this building being use	en et de ser en	-	
	And and the second frame	Third CO, Englanding	*	

Energy grades to be posted on buildings larger than 25,000sf in size, beginning October 2020

150

LOCAL LAW 95

a building energy efficiency grade

LOCAL LAW 96 establishing a sustainable energy loan program (i.e. PACE)

Financing for energy efficiency and renewable energy projects with long terms and little or no money down

LOCAL LAW 97

the commitment to achieve certain reductions in greenhouse gas emissions by 2050

BUILDINGS LARGER THAN 25,000SF IN SIZE: Greenhouse gas emissions limits must be met starting in 2024

the commitment to achieve certain reductions in greenhouse gas emissions by 2050

- GHG emissions limits for all buildings >25,000 square feet
- Creation of a DOB "Office of Building Energy and Emissions Performance"
- Convening of an advisory board on future limits
- Study for a building carbon trading scheme
- City operations GHG reductions of 40% by 2025 and 50% by 2030
- NYCHA properties need to meet GHG reductions of 40% by 2030

NYC emissions: 51.7 MtCO₂e

By 2030, the Climate Mobilization Act will achieve:

- 6 million tons of CO₂e reduced
- 26,700+ jobs created
- 150 hospitalizations avoided per year
- 50 to 130 deaths prevented per year

LOCAL LAW 97 TARGETS

LOCAL LAW 97 TARGETS

LOCAL LAW 97 TARGETS

Key Findings about Building Energy Use

 The energy used for space heating and domestic hot water (DHW) production accounts for the majority of buildingbased emissions

Building GHG Emissions by End Use

Source: 2013 and 2014 Local Law 87 Submissions

Building Energy Use by Fuel Type

 Fossil fuels dominate energy use and GHG emissions from New York City's buildings.

Sources of NYC Building-based Emissions by Fuel Type

A Buildings Pathway to 80 x 50

Nearly every building will need to complete a deep energy retrofit, and many will need to move away from fossil fuel-based heating and hot water systems.

implemented in 2022 for both public and private buildings.

One City Built to Last Overlap

***Includes 100% overlap with One City Built to Last initiatives and TWG ECMs, 50-60% of buildings implement strategies that include high efficiency electric technologies for heat and hot water.

Deep Energy Retrofit Paths

Models of deep energy retrofit paths show that **40-60 percent energy reductions** are possible using existing technologies and strategies.

Eight Key Building Typologies

Citywide Citywide Building Area: Building-based 25.7% GHG: 18.9%

Citywide Citywide Building Area: Building-based 15.8% GHG: 11.5%

Citywide Citywide Building Area: Building-based 3.3% GHG: 2.4%

Sample Deep Retrofit Path Results Multifamily, Post-War, > Seven Stories

Path GHG Emissions Reduction (MtCO₂e) 405

Electrification Paths:

Path 3: Heat Pumps for Heating and Cooling

Path 4: Heat Pumps with Building Envelope Measures

New York City's Energy Efficiency Programs

The City has created a **suite of programs and policies to help decision-makers** understand their buildings' energy use and make voluntary upgrades.

THE NEW YORK CITY GREENER, GREATER BUILDINGS PLAN

🕥 gree**nvc**

SOLARIZE NYC

NYC Accelerator

Free Help. Simple Fixes. Big Results.

- Work with you one-on-one to understand your needs
- Connect you with qualified contractors to do the job
- Find cash incentives and financing to help pay for your upgrades
- Train your building staff so your building continues to run efficiently
- Support you every step of the way from project start to finish

The High Performance Retrofit Track

- Pilot deep energy retrofits in real buildings
- 15-year capital plans to reach high performance
- Upgrades to all major building systems: HVAC, DHW, Envelope
- Develop a pathway for implementation across larger portfolios

High Performance Track Services

- Create capital plans that integrate energy efficiency
- Educate and train on high performance technology
- Deploy intern capacity
- Train decision makers on high performance retrofits
- Support implementation of early capital projects

High Performance Retrofit Track (HPRT) Mission

.025 -	Support the planning and implementation of deep energy retrofit measures to achieve an EUI = 40-60 kBtu/sq.ft.								
.02 -									
.015 -	and GHG emissions reduction of 40-60%								
.01 -	for all privately-owned building types.								
.005 -									
0 - Mayor's Offic Sustainabilit	Worst 1 st Worst Worst Worst Worst Worst 50 th Best Best Best Best Best Best Best Best								

High Performance Retrofit Track (HPRT) Process

Data Collection

- Local law 87 audit review
- Equipment inventory review
- On-site visit

Resources

- Deep Energy Retrofit Planning Analysis (DERPA) reports
- HPRT 15-year plan
- Technical Primers

Pre-engineering feasibility assessment

Deep Energy Retrofit Planning Report (DERPA)

High Performance Retrofit Plan

Property Name: Address:		Package 3 Objective: Year 15 Site Energy Savings
Select HPR Pathwa	Package 3	78% to 82%
* I IODT	Type an X into the appropriate box below	
COLOR MARK	Measure	in within three years of signing commitment, major systems are indicated in bold Implementation Tracking
Category Existing Building	System Optimization	2018* 2019* 2020* 2021 2022 2023 2024 2025 2026 2027 2028-2033
• Spa Ligh Ven	<i>g Building System Optimizatio</i> ice Heating, Cooling, Ventilatio nting velope: Air sealing	n: Improve distribution, controls; maintenance
	1 8	
Res On-	site generation: Solar	2028-2033
Lights/Appliances Air Sealing	Improved tenant space plug load efficiency/contro Tenant space air sealing	
Spa Coo Ven Ven • Don	<i>g Building System End of Life:</i> ace Heating, Cooling, Ventilation nestic Hot Water: Heat Pumps velope: Walls, Windows, Roof –	n: Heat pumps, DOAS
Exterior Walls	Package 3: No major change, ENERGY STAR	x
Windows	Double pane insulated windows and frames	x
Roof	Maximize roof insulation	x

10 Participants, 30 Buildings

FirstService RESIDENTIAL

Memorial Sloan Kettering Cancer Center

Fourth Avenue Owners Corp.

NYC HEALTH+ HOSPITALS

HPRT Projects & Support

Projects:

- Air Source Heat Pumps (ASHP)
- DHW heat pumps (ASHP)
- Hybrid heat pump (AWHP)
- Windows
- Advanced central space cooling technology

Support Services

- Building site visits
- Multifamily residential board meeting presentations
- Pilot project planning support
- Review vendor proposals and RFP for heating and cooling system
- Vendor engagements

Address:		-				Year	15 Site E		avings			
Select HPR Pathway:						-	78% 1	0 82%	-			
	Type an "X" into the appropriate box below	1.0										
*HPRT requires that u	pgrades on at least two major building systems begin within three y	ears of signi	ing com	mitment	, major s	ystems	are indik	cated in	bold		-	
Category	Measure			ation T	rackin	5						
Existing Building Sys	stem Optimization	2018*	2019*	2020*	2021	2022	2023	2024	2025	2026	2027	2028-2033
DHW Use	Low flow fixtures		x				100					
Air Sealing	Common area air sealing		1	1000			x					
			1	1	-	1	1000	-	-	1	-	
			-								-	
Lights/Appliances	Common area efficiency and controls upgrade		x	10.00	-		1	-			-	
Ventilation	Seal and balance existing ductwork		x				1.1		-			
On-site Generation	Largest feasible solar array on roof								x			
		+							-	_	_	
Resident Engageme		2018*	2019*		2021	2022	2023	2024	2025	2026	2027	2028-2033
Lights/Appliances	Improved tenant space lighting efficiency/controls	-		x								
Lights/Appliances	Improved tenant space plug load efficiency/controls				x		1.0		-			
Air Sealing	Tenant space air sealing						x				1	
						_	_		_	_	_	_
Existing Building Sys	stem End of Life	2018*	2019*	2020*	2021	2022	2023	2024	2025	2026	2027	2028-2033
Space Heating and Cooling	Package 3: Heat pumps for space heating and cooling						x					
-												
Ventilation	Maximized use of energy recovery for centralized equipment			×								
DHW Plant	Air-water heat pump					×						
Exterior Walls	Package 3: No major change, ENERGY STAR											×
Windows	Double pane insulated windows and frames											×
Roof	Maximize roof insulation											x

Technology Primers: Electrification

Air to Water Heat Pumps (AWHPs) Highly efficient domestic hot water production that reduces emissions and energy costs.

<u>tech primer</u> **Mini-Split Systems** Highly efficient heat pumps for decentralized electric heating and cooling in multifamily buildings.

tech primer

Solar Photovoltaics & Batteries Clean, renewable electricity generation and storage to dramatically reduce utility costs.

building energy exchange

educational resources for high performance retrofits

Rebecca Esau AIA Associate, Projects The Building Energy Exchange works to reduce the effects of climate change by improving the built environment.

We accelerate the transition to healthy, comfortable, and energy efficient buildings by serving as a resource and trusted expert to the building industry.

the problem

buildings are responsible for 70% of NYC's greenhouse gas emissions

buildings are essential to combating climate change; they must become dramatically more:

the solution

connecting decision makers with actionable information

100,000+ building decision makers in New York City

energy efficiency solutions & education

what is BEEx?

a global center for excellence dedicated to building energy efficiency

everyday efficiency

networking, inspiring stories, topical events incremental measures, systems and products

long term planning, holistic retrofits

what is BEEx?

a global center for excellence dedicated to building energy efficiency

1. education training, events & symposia

2. tools reports, case studies & campaigns

3. exhibits advanced technology & hands-on experiences

1. education

diverse programming that informs on energy efficiency

700

trainings & events in our energy efficiency resource center

19,000

building decision makers have attended BEEx programming 50+

organizations have hosted events in our space

2. tools research & initiatives that have real impact

reports that turn data into action campaigns that engage entire communities case studies with clear, critical lessons
3. exhibits

hands-on experiences that display advanced technology and inspire action

educational exhibits demystify energy efficiency

transformative exhibits inspire action fun

exhibits are hands-on, interactive experiences

case: electrification

supporting fossil fuel conversion retrofits

intro to deep-energy saving technologies + implementation best-practices

intro to deep-energy saving technologies + implementation best-practices

building operators

grandma

intro to deep-energy saving technologies + implementation best-practices

heating

C: domestic hot water

plug load reduction

renewable energy

intro to deep-energy saving technologies + implementation best-practices

tech overview

- applicable building types commercial implementation anytime, at midcycle or refinance fast facts
- reduces GHG emissions
- improves air quality
- reduces heating and cooling loads
- reduces maintenance costs
- reduces utility costs

costs & benefits*

GHG Savings

ga ga ga ga

Tenant Experience Improvements

* * * *

Utility Savings

Capital Costs

Maintenance Requirements

\$ \$ \$ \$ \$

intro to deep-energy saving technologies + implementation best-practices

technology overview:

performance

benefits

compatibility

timing

intro to deep-energy saving technologies + implementation best-practices

implementation requirements:

components

coordination

tenant engagement

case: participant profiles

showcasing high performance retrofits

"Passive House is about more than saving energy. It's about improving comfort, health, quality of life, and laying a foundation for communities to thrive."

-Scott Short, CEO RiseBoro Community Partnership

be-exchange.org/ techprimers/

building energy exchange

thank you.

Rebecca Esau AIA Associate, Projects re@be-exchange.org

High Performance Retrofit Accelerator Casa Pasiva September 26 2019

> Ryan Cassidy, CPHC Dir of Construction & Sustainability

Why Passive House? The Triple Bottom Line of Passive House Buildings

A Comparison of Typical Annual Maintenance & Operational Expenses

Impact on funding: 50% reduction in gas & electric cost

"80 by 50" Is It Possible? RiseBoro New Construction

"80 by 50" NYC Deep Energy Retrofit Planning Report

Renovating to the Passive Standard

Renovating to the Passive Standard

- Typical YR15 Financing Methods
- Moderate Rehab/Tenant In Place
- Underwrite to Savings
- Gap financing by NYSERDA
- Meet Passive House (PHIUS) Standard
- Bonus: Renewables/Solar

Portfolio

			<u>2018</u>			<u>Total</u>			
Building	Building Type	<u>Old LL84</u>	<u>LL84</u>	Stories	<u>Elevator</u>	<u>Units</u>	<u>1BD</u>	<u>2BD</u>	<u>3BD</u>
75 Linden Street	Masonry/wood joist			4		12	4	5	3
104 Grove	Masonry/wood joist		Y	4		23		17	6
110 Grove	Masonry/wood joist		Y	4		23		17	6
116 Grove	Masonry/wood joist		Y	4		16	2	14	
120 Grove	Masonry/wood joist		Y	4		16	2	14	
93-95 Stockholm	Masonry/wood joist			4		14	6	8	
160 Harman	block/ poured concrete			4		14		14	
173 Harman	block/ poured concrete			4		14		14	
181 Harman	block/ poured concrete			4		14		14	
				Total		146	14	117	15

Scope of Work

Newer Buildings (built after 1990)

Scope of Work Diagram:

EXPLODED AXONOMETRIC OF TYPICAL APARTMENT WORK

Passive Rehab: Means & Methods

HVAC Systems (VRF and ERV)

Opportunity: Controlled, efficient distribution

Challenge: Cost, Billing, Submetering

Insulate Outside Existing Walls (Rainscreen or EIFS)

Opportunity: Run HVAC lines in new insulation-less tenant

Challenge: Lot line easements for new insulation

Opportunity: New air & moisture barrier

Passive Rehab UTILITY analysis

						Water &				Energy %	% Utility
	Electric		Gas	Oil		Sewer	Total Energy	Utility Total		Reduction	Reduction
2014 Utilities	\$	41,149.00	\$ 87,486.00	\$	177,269.00	\$ 194,576.00	\$ 305,904.00	\$	500,480.00		
2018 Utilities	\$	35,519.00	\$ 127,992.00	\$	3,813.00	\$ 143,829.00	\$ 167,324.00	\$	311,153.00	45.30	37.83
Modeled: WUFI Passive	\$	40,082.49	\$ 11,620.98	\$	-	\$ 107,871.75	\$ 51,703.47	\$	159,575.22	83.10	68.12

Underwriting

Casa Pasiva Model Comparison

How Are We Doing?

Knickerbocker Commons Passive House

Mennonite United Passive House

Future: Sustainable Construction & Renovation

Local Laws- 84, 87, 31, 11, 91

Increased Data Collection

Electrifying Buildings !!!

Renewables & Net Zero

One City: Built to Last

What is Passive House?

A building constructed to "Passive House" standards must meet strict energy efficiency criteria for its insulation, space heating and cooling, and primary energy demand within the building. These standards require minimizing heating and cooling loads through substantial insulation: the "passive" use of solar heat and internal heating sources, such as people and electrical equinment to heat the building; solar shading to cool the building, and heat recovery systems for space heating that is required. Because the building is essentially alrtight, a continuous supply of low volume filtered fresh air must also be supplied to living and working spaces, and stale air regularly exhausted from spaces with high-efficiency heat exchange to minimize heating losses

Passive House standards car he applied to both new construction and renovations. For the renovation of existing buildings, the performance standard is slightly more lenient, but still results in a roughly 90 percent reduction in average heating and cooling energy usage and up to a 75 percent reduction In primary energy usage. A. Passive House building can also be any type of building including an apartment building, a school, an office building, a factory, a supermarket, or a single-family house

Case Study: Knickerbocker Commons Affordable Housing 803 Knickerbocker Avenue, Brooklyn

Architect: Chris Benedict, R.A. Owner: Ridgewood Bushwick Senior Citizen's Council General Contractor: Galaxy Construction Construction Cost: \$180/square foot No. of Units: 24

Knickerbocker Commons, the first mid-sized apartment building designed to Passive House standards in the United States

Knickerbocker Commons, a six-story residential building containing 24 units of affordable housing, is the country's first mid-sized apartment building to conform to Passive House design standards. To achieve the strict Passive House standards, each rental unit in Knickerbocker Commons has its own ventilation system and small radiators for heating and airtight window air conditioning units for cooling. In addition, the building features triple-paned windows and a sculpted exterior that shade windows from the sun in the summer and maximize exposure in the winter. According to the project's architect, Chris Benedict, the building will use 85 percent less energy than is typically required to heat a New York City apartment building in the winter.

The apartment is located in the Bushwick neighborhood of Brooklyn and was developed through HPD's Low Income Rental Program. Of the 24 units, six units will be rented to households earning up to 30 percent of Area Median Income (AMI), five units will be rented to households earning up to 50 percent of AMI, 12 units will be rented to households earning up to 60 percent of AMI, and one unit will be set aside for a building superintendent. In addition to the residential units, the project includes almost 5,000 square feet of community facility space.

How Can We Help?

- Utility Allowance Reform
 Heat pumps & electric stove
- Utility Pricing- gas versus electric
- Retainage withheld from Contractor for Building Performance
- Energy Reserve
 Funded From Developer Fee
 Performance-based

- Architect & Designer
 - Chris Benedict, R.A.
 - Paul Castrucci Architect
- Utility Rebates
 - ConEd- BQDM, LMI
 - National Grid- replacement incentives
 - DEP- MCP Program
- NYSERDA (State)
 - MPP Targeted
 - Gap Financing via RetrofitNY
- NYC (local/City)
 - Retrofit Accelerator
 - Carbon Challenge
- 3rd Party Providers
 - Water Conservation- aerators, wireless meters
 - Renewables- Solar Tax Credit

THANK YOU Ryan Cassidy, CPHC

Director of Construction & Sustainability rcassidy@riseboro.org 20