Electrifying Our Small Building Stock: Lessons from The Field

Scott Smith, Program Manager, NYSERDA

Nikki Joseph, Clean Energy Communities Coordinator, NYC Mayor's Office of Sustainability

Jordan Dentz, Vice President, The Levy Partnership, Inc.

Julie Liu, Principal, Centsible House

Building Energy NYC September 26, 2019

Clean Heating & Cooling Building Energy NYC

September 26, 2019

Scott Smith

Why is the Topic of Clean Heating & Cooling Relevant to NY State

- HVAC accounts for around <u>a third</u> of NY carbon emissions.
- "<u>Beneficial Electrification</u>": Heat Pumps can help decarbonize the heating and cooling sector by:
- 1. Cooling at greater efficiency than air-conditioning (thus reducing summer peak)
- 2. Replacing fossil heating with heat pump heating, resulting in:
 - Increased grid utilization in the winter months
 - Significant carbon savings even at current grid carbon intensity
 - Further carbon savings in future as power generation decarbonizes further
 - Energy bill savings in homes heated with fuel oil and propane
 - Increased health benefits with no carbon monoxide produced on site

Barriers to Clean Heating and Cooling Adoption

- High first costs and insufficient return on the additional investment above the cost of a regular heating & cooling system
- Low fossil fuel costs
- Limited training available for installers, designers, architects, and engineers
- Lack of consumer knowledge and awareness
- Lack of affordable financing solutions

CH&C Programs

Air Source Heat Pumps (ASHP) Program [PON 3635 \$10.95M]

- NYSERDA is providing up to \$10.95 million in incentives to participating installers for the installation of program qualified ASHP systems in residential sites to include single-family and multifamily buildings through 2019. Incentives, provided on a first-come, first-served basis, include those that may be retained by the Participating Installer as well as incentives for Whole-House Solution ASHP Systems that will be paid to the Participating Installer but must be credited to site owners.
- 250+ Participating Installers

• Ground Source Heat Pumps (GSHP) Rebate Program [PON 3620 \$26.5M]

- Offers \$15 million to support the installation of ground source heat pump systems at residential, commercial, institutional, and industrial buildings. Funding is available only to eligible designers and installers of renewable heating and cooling systems that have been approved by NYSERDA through June 2019.
- 68 Participating installers
- Clean Heating & Cooling Communities Campaigns [PON 4114 / \$2.5 Million available in third round, \$8 Million total investment]
 - Support for communities to increase customer awareness of CH&C technologies, reduce installed costs, and jump-start the market by implementing multi-year campaigns consisting of community-based outreach and education focused on CH&C.
 - Retained consultant to provide technical assistance to communities
- Geothermal Clean Energy Challenge [\$3.5 Million Available]
 - NYSERDA and NYPA will identify the best candidates for large, multi-building geothermal ground-source heat pump installations by providing free technical assistance and financial support. Open only to qualified colleges and universities, K-12 schools, State and local governments, and hospitals in New York State.

CH&C Programs Launched since June 2017 cont.

- Cooperative Advertising and Training for CH&C Partners [PON 3694 / \$2 Million]
 - NYSERDA has made \$2 million available to support advertising, special promotions and/or events, including training, for eligible HVAC technologies. Incentives up to 50 percent of the total cost for educational and marketing promotion opportunities to eligible participants, such as HVAC manufacturers, HVAC distributors/vendors and HVAC installers participating in PON 3653: Air-Source Heat Pump Program, PON 3620: Ground-Source Heat Pump Rebate or Renewable Heat New York
- NEXTGEN HVAC Technology Challenges [PON 3519 / \$15 Million Available in 4 Rounds]
 - Several heat pump related categories
- Financing Solutions
 - Conduct financial solutions market research for CH&C technologies (focus in financing and investing)
 - Federal tax credit of 30% residential and 10% commercial for geothermal installations reinstated
 - Green Jobs Green NY Loan Program available to eligible GSHP and ASHP Installers
- Marketing & Outreach
 - Developing clean heating & cooling messaging with marketing consultants KSV
 - Developing customer targeting tool to identify high potential customers

Clean Heating and Cooling Community Campaigns

- Funding for local outreach, education, and bulk procurement for clean heating and cooling (CH&C) technologies:
 - Ground Source Heat Pumps
 - Air Source Heat Pumps
 - Solar Thermal
 - High-Efficiency, Low-Emission Biomass
- Increase consumer education and awareness of CH&C technologies
- Reduce purchase and installation costs
- Grow the CH&C workforce
- Increase participation of low- to moderate-income (LMI) households

Performance Validation and Demonstration Projects

- Ground Source Heat Pumps
 - ~50 existing residential systems statewide
 - ~45 additional residential systems on Long Island
- Air Source Heat Pumps
 - 20 residential replacements in Brooklyn and Queens
 - 20 residential displacements in the Hudson Valley

Performance Validation and Demonstration Projects

- Air Source Heat Pumps (Cont.)
 - 5 residential air to water systems in Tompkins County
 - 5 residential low capacity gas furnace/ASHP hybrids in Central NY
 - 2 VRF systems
 - One commercial in Westchester
 - One Multifamily building in NYC

Performance Validation and Demonstration Projects

- Goals:
 - Determine what information the market needs on technical and economic performance
 - Collect performance information that can be communicated accurately and confidently
 - Disseminate the information to the market and make data available to create change

Thank You

Scott Smith

Scott.smith@nyserda.ny.gov

518-862-1090 ext. 3344

New York City's Building Electrification Goals & Small Homes

NYC's Roadmap to Carbon Neutrality

70% Of citywide emissions come from the energy used in buildings

40% Of citywide emissions come from on-site fossil fuel use in buildings

At least:

- 100% Of buildings will need to complete a deep energy retrofit50-60% Of buildings must convert to high efficiency electric heat pumps
- 90%+ Of buildings must electrify hot water systems

Electrification Focus on Small Buildings

- NYC has > 800,000 small residential buildings, which account for nearly 20% of building GHG emissions.
- 176,000 small residential buildings across NYC identified as good candidates for ASHP installations.
- Contractor research identified that demand needed to reach 2050 goals will surpass installer supply by 2020.
- Customer Market Research completed to identify motivators, barriers, and best messaging channels.

Potential ASHP candidates in Staten Island

Ongoing and Upcoming Initiatives

- Contractor-based Outreach and Assistance program to accelerate ASHP retrofits in small residential homes
- Standardizing ASHP Contractor QA/QC requirements
 - Working group with NYSERDA, Con Ed, & National Grid with support from TRC
 - To be enforced by utility & statewide incentive programs, as well as upcoming City programs
- Equitable Workforce Development
 - Project with the Building Electrification Initiative (BEI) to:
 - Explore how to increase MWBE participation
 - Build a growing pipeline of HVAC contractors

Thank You

Nikki Joseph njoseph1@moconsultant.nyc.gov

DOWNSTATE AIR SOURCE HEAT PUMP DEMONSTRATION

THE LEVY PARTNERSHIP CENTSIBLE HOUSE FRONTIER ENERGY

September 26, 2019

Overview

- 20 Sites
- Brooklyn, Queens, Bronx, Yonkers, Long Island

Goals:

- Understand and demonstrate viability costs and savings
- Increase awareness, and confidence
- Market exposure
- Provide resources for NYSERDA to promote benefits

Sites

- 1-3 family buildings
- Owner-occupied with rental units
- Tight urban lots
- Most masonry attached; some wood frame SFD
- Gas and oil
- Boilers with window ACs
- Old buildings, minimal insulation

Retrofit Scope

- Full boiler replacement
- Some weatherization

Site Status

- 20 sites installed
- 12 sites have one year data
- 8 sites data pending

Equipment

- Cold climate (NEEP listed)
- 3-4 condensing units
- 6-12 air handlers
- Wall mounted multisplits
- A few ducted units
- Mostly Mitsubishi/Fujitsu equipment

Mitsubishi	Fujitsu
Outdoor unit	Outdoor unit
MXZ3C24NAHZ	AOU12RLS3H
MXZ4C36NAHZ	AOU18RLXFZ H
MXZ3C30NAHZ	AOU24RLXFZ H
MXZ5C42NAHZ	AOU36RLXFZ H
MXZ4C36NAHZ	AOU36RLAVM
Indoor units	Indoor units
MSZFH06NA	ASU7RLP1
MSZFH09NA	ASU9RLP1
MSZFH12NA	ASU12RLP1

Envelope Improvements

Envelope Improvement	Details
Air Sealing	Reduce overall air leakage of heated area from 1.75 ACH to 1.25ACH.
Rim Joist	Upgrade 180 square feet of existing rim joist to 2" High Density Foam, 1.5" Wood, 0.5" Wood Siding, R-15
Second floor attic insulation	Upgrade 320 square feet of existing ceiling to Gyp Bd, 2x6 16" OC, 6" cellulose, R-19

Costs

ltem	Cost
Heat pump equipment (10 zones)	15,000
Heat pump labor	20,783
Total heat pump	35,783
Cost per ton	4,647
Cost per zone	3,578
Envelope materials + labor	10,736
Total job	46,519

SITE 10 TLP-10 - Pre & Post Utility Oil Analysis WUG: JFK

Heating season only (space and water heating)	PRE	POST	Savings
Costs	\$8,237	\$5,987	\$2,250
Oil (Gal/yr) \$3.60/gal	2,288	613	1,480.7
Electric (kWh/yr) \$0.21/kwh		18,955	(18,955)
Implied COP accounting for envelope		2.0	

Envelope Improvements

Envelope	Details				
Improvement	Details				
Exterior wall	Upgrade 1,160 sqft, from interior, to Gyp Bd, 2x4 16" OC, 3.5"				
insulation	cellulose, 0.75" wood, 4" brick, R-13				
Air sealing	Reduce overall air leakage of the heated area from 5,789				
	CFM50 to 4,300 CFM50				

Costs

ltem	Cost
Heat pump equipment (8 zones)	12,687
Heat pump labor	24,443
Total heat pump	37,130
Cost per ton	4,271
Cost per zone	3,523
Envelope materials + labor	18,943
Total job	47,130

Cooling

78,800

75,623

Capacity

Calculated

			Outdoor unit			Indoor units		
.2								
	Floor	Room	Model	Cooling	Heating	Model	Cooling	Heating
		Living Room				MSZ-FH12NA	12,000	13,600
	Ground	Main Bedroom				MSZ-FH09NA	9,000	10,900
	floor	Baby Bedroom	MXZ-5C30NAHZ			MSZ-FH06NA	6,000	8,700
		total		28,400	28,600	Indoor unit total	27,000	33,200
		Kitchen-Dining	MXZ-3C24NAHZ2			MSZ-FH15NA	15,000	18,000
	2nd	Front Room 2				MSZ-FH09NA	9,000	10,900
		total		22,000	25,000	Indoor unit total	24,000	28,900
		Front Room 1				MSZ-FH06NA	6,000	8,700
Heating	3rd	Office				MSZ-FH06NA	6,000	8,700
82,200		Back Room+Bathroom	MXZ-4C30NAHZ			MSZ-FH12NA	12,000	13,600
74,167		total		28,400	28,600	Indoor unit total	24,000	31,000

MARTER

NEW MARCHICS

8-4 1/2

SITE 12 - OWNER

Heating season only (space and water heating)	PRE	POST	Savings
Costs	\$942	\$1,274	\$(331)
Gas (therms/yr) (\$1.79/therm)	567	205	321
Electric (kWh/yr) (\$0.21/kWh)		4,319	(4,319)
Implied COP		0.7	

SITE 12 - TENANT

Heating season only (space and water heating)	PRE	POST	Savings
Costs	\$1,071	\$1,397	\$(326)
Gas (therms/yr) (\$1.79/therm)	598.5	280	319
Electric (kWh/yr) (\$0.20/kWh)		3,454	(3,454)
Implied COP		1.4	

SITE 12 Indoor Space Temperatures

Envelope Improvements

Envelope Improvement	Details
Air sealing	Reduce overall air leakage of heated area from 4,742 CFM50 to 3,000 CFM50
Rim Joist Insulation	Rim joist upgrade, 122 sq ft, 2" high density foam, 1.5" wood, 0.5" wood, siding, R15

ltem	Cost
Heat pump equipment (5 zones)	12,083
Heat pump labor	7,917
Total heat pump	20,000
Cost per ton	4,762
Cost per zone	4,000
Envelope materials + labor	0
Total job	20,000

		RHVAC si	zing calcs	Outa	door unit		Indoor units		
Floor	Room	Cooling	Heating	Model	Cooling	Heating	Model	Cooling	Heating
	Living Room			- MXZ-3C24NAHZ - -			MSZ-FH06NA	6,000	8,700
1.0+	Back bedroom 1						MSZ-FH06NA	6,000	8,700
1st	Back bedroom 2						MSZ-FH06NA	6,000	8,700
	Total	15,367	23,415		22,000	25,000	indoor unit total	18,000	26,100
	Front Bedrooms			MXZ-3C30NAHZ			MSZ-FH12NA	12 <i>,</i> 000	13,600
2nd	Back Bedroom						MSZ-FH12NA	12,000	13,600
	Total	22,307	30,197		28,400	28,600	indoor unit total	24,000	27,200
	Btu	37,674	53,612		50,400	53,600		42,000	53,300
Total	Tons	3.1	4.5		4.2	4.5		3.5	4.4

2nd Floor

There was no post-retrofit oil use as indicated above. However, post-retrofit oil use was included in the analysis to account for DHW use. An electric DHW tank was installed at the time of the ASHP installation.

Heating season only (space and water heating)	PRE	POST	Savings		
Costs	\$7,165	\$6,190	\$1,299		
Oil (Gal/yr) \$3.60/gal	1,990	692	1,298		
Electric (kWh/yr) \$0.21/kwh		17,620	(17,620)		
Implied COP		2.3			

The second floor apartment was not accessible at the time of monitoring equipment installation or data retrieval.

Installation Summary

		Living	Не	at pump	Не	at pump	Не	at pump	W	eather-			Hea	at pump		Heat oump	Zones			Cap/
Site	Zones	Units	eq	uip. cost	la	bor cost	total cost		ization cost		Total cost		total/zone		total/ton		per apt.	Htg load	Cap @ 47	Load
1	6	1	\$	8,290	\$	15,610	\$	23,900	\$	-	\$	23,900	\$	3,983	\$	4,686	6	42,998	61,400	143%
3	7	1	\$	11,156	\$	20,992	\$	32,148	\$	5,500	\$	37,648	\$	4,593	\$	5,358	7	99,462	78,600	79%
5	10	1	\$	18,024	\$	34,166	\$	52,190	\$	5,500	\$	57,690	\$	5,219	\$	8,698	10	80,226	78,600	98%
10	10	2	\$	15,000	\$	20,783	\$	35,783	\$	10,736	\$	46,519	\$	3,578	\$	4,647	5	110,633	102,200	92%
12	8	2	\$	12,687	\$	24,443	\$	37,130	\$	10,000	\$	47,130	\$	3,523	\$	4,271	4	74,167	82,200	111%
14	7	1	\$	13,530	\$	9,500	\$	23,030	\$	28,431	\$	51,461	\$	3,290	\$	3,715	7	76,224	75,000	98%
19	5	2	\$	12,083	\$	7,917	\$	20,000	\$	-	\$	20,000	\$	4,000	\$	4,762	2.5	53,612	53,600	100%
21	4	2	\$	6,555	\$	11,319	\$	17,874	\$	5,500	\$	23,374	\$	4,469	\$	5,766	2	43,095	45,000	104%
23	7	1	\$	15,576	\$	6,000	\$	21,576	\$	13,596	\$	35,172	\$	3,082	\$	3,657	7	54,411	64,900	119%
25	8	1	\$	10,696	\$	11,304	\$	22,000	\$	7,350	\$	29,350	\$	2,750	\$	3,729	8	31,719	77,400	244%
31	7	1	\$	7,429	\$	15,571	\$	23,000	\$	-	\$	23,000	\$	1,714	\$	2,500	7	41,397	64,200	155%
32	4	1	\$	5,682	\$	6,318	\$	12,000	\$	3,500	\$	15,500	\$	3,000	\$	4,138	4	20,009	39,341	197%
35	6	1	\$	10,200	\$	14,800	\$	25,000	\$	1,000	\$	26,000	\$	4,167	\$	5,208	6	45,252	54,000	119%
39	4	1	\$	4,903	\$	7,097	\$	12,000	\$	-	\$	12,000	\$	2,000	\$	2,759	4	31,967	39,341	123%
40	3	1	\$	4,488	\$	7,512	\$	12,000	\$	9,750	\$	21,750	\$	4,000	\$	6,667	3	23,694	26,000	110%
41	4	1	\$	7,444	\$	6,000	\$	13,444	\$	14,327	\$	27,771	\$	3,361	\$	3,361	4	47,871	42,500	89%
42	4	1	\$	10,431	\$	8,000	\$	18,431	\$	-	\$	18,431	\$	4,608	\$	4,608	4	45,320	48,000	106%
44	5	1	\$	7,000	\$	9,000	\$	16,000	\$	-	\$	16,000	\$	3,200	\$	4,324	5	37,926	52,000	137%
45	11	3	\$	14,000	\$	10,000	\$	24,000	\$	10,000	\$	24,000	\$	2,182	\$	3,000	3.7	69,456	115,000	166%
46	8	1	\$	19,100	\$	8,900	\$	28,000	\$	-	\$	28,000	\$	3,500	\$	4,000	8	53,864	96,000	178%
18	9	2	\$	15,243	\$	9,840	\$	25,083	\$	26,500	\$	51,583	\$	2,787	\$	3,420	4.5	51,660	95,000	184%
Avg	6.5	1.3	\$	10,929	\$	12,622	\$	23,552	\$	7,223	\$	30,299	\$	3,476	\$	4,442	5.3	54,046	66,204	131%
Installation Summary

	Average
Zones per site	6.5
Living units per site	1.3
Zones per apt.	5.3
Heat pump equip. cost per site	\$10,929
Heat pump labor cost per site	\$12,622
Heat pump total cost per site	\$23,552
Weatherization cost per site	\$7,223
Total cost per site	\$30,299
Heat pump cost per zone	\$3,476
Heat pump cost per ton	\$4,442
Heating load (Btu/hr) per site	54,046
Rated heating capacity (Btu/hr) per site	66,204
Capacity/Load avg. of all sites	1.3

Capacity and zones

M&V Summary

Site	old fuel	Site MMBTU savings	Savings lbs. CO2 emissions	\$avings of HP only	\$avings entire	COP accounting for env	COP raw	Reduced existing system use by
3	oil	223	29,242	\$ 572	\$ 2,250	1.8	2.6	72%
5	gas	179	15,579	\$ (746)	\$ 485	2.0	3.2	70%
10	oil	228	29,396	\$ 759	\$ 2,049	2.0	2.6	81%
12 owner	gas	31	1,865	\$ (673)	\$ (331)	0.7	1.7	89%
12 tenant	gas	31	2,210	\$ (326)	\$ (155)	1.4	2.1	84%
14	Oil	226	31,082	\$ 1,470	\$ 3,078	2.3	3.2	100%
19	oil	176	21,504	\$ 975	\$ 975	2.3	2.3	100%
21	Gas	20	(280)	\$ (1,190)	\$ (973)	0.4	0.9	20%
23	oil	105	14,591	\$ 225	\$ 1,489	2.0	3.6	100%
25	Gas	103	8,117	\$ (429)	\$ (162)	2.0	2.4	100%
39	Oil	50	5,321	\$ (113)	\$ (113)	1.8	1.8	100%
45	Oil	93	11,460	\$ (434)	\$ 572	1.5	2.6	100%
46	Gas	16	(1,768)	\$ (1,571)	\$ (1,571)	0.5	0.5	21%
AVG	0	88	9,951	\$ (114)	\$ 584	1.6	2.3	80%
AVG Oil (7)	Oil	157	20,371	\$ 493	\$ 1,471	2.0	2.7	93%
Avg Gas (6)	Gas	63	4,287	\$ (822)	\$ (451)	1.2	1.8	64%

Low COP of sites 21 and 46 suspected due to behavioral changes – higher post-retrofit setpoint and/or under-heating pre-retrofit. Both sites barely reduced existing system use.

M&V Summary

	Avg	Avg Oil (7)	Avg Gas (6)	
Old fuel	All	Oil	Gas	
Site MMBTU savings	88	157	63	
Savings lbs. CO2 emissions	9,951	20,371	4,287	
\$avings of HP only	\$ (114)	\$ 493	\$ (822)	
\$avings entire	\$ 584	\$ 1,471	\$ (451)	
COP accounting for envelope	1.6	2.0	1.2	
COP raw	2.3	2.7	1.8	

Savings

COPs

Are the COPs a true reflection of the equipment performance, a result of behavioral changes, how much are they impacted by controls/settings, or some other reason?

If you leave it they will use it

Site	Reduced existing space heating system use by	Existing System Status
3	72%	In-Place
5	70%	In-Place
10	81%	In-Place
12.1	89%	In-Place
12.2	84%	In-Place
14	100%	Removed
19	100%	Removed
21	20%	In-Place
23	100%	In-Place
25	100%	Not Operational
32	100%	Removed
39	100%	In-Place
44	100%	Removed
45	100%	Removed
46	21%	In-Place

Could integrated controls have improved performance?

Cost effectiveness of envelope measures

Site	vings due to envelope measures	Cost of envelope measures		envelope		envelope		Payback (years)	ROI
3	\$ 1,678	\$	5,500	3.3	31%				
5	\$ 1,231	\$	5,500	4.5	22%				
10	\$ 1,291	\$	10,736	8.3	12%				
12 owner	\$ 341	\$	10,000	19.5	12%				
12 tenant	\$ 171	Ļ	Ş 10,000		1270				
14	\$ 1,608	\$	28,431	17.7	6%				
19	\$ -	\$	-	N/A	N/A				
21	\$ 218	\$	5,500	25.3	4%				
23	\$ 1,264	\$	13,596	10.8	9%				
25	\$ 267	\$	7,350	27.5	4%				
39	\$ -	\$	-	N/A	N/A				
45	\$ 1,006	\$	10,000	9.9	N/A				
46	\$ -	\$	-	N/A	N/A				
AVG	\$ 698	\$	8,051	11.5	9%				
AVG Oil (7)	\$ 978	\$	9,752	10.0	10%				
Avg Gas (5)	\$ 371	\$	5,670	15.3	7%				

Did the envelope improvements enable reduced heat pump sizing?

Installation Problems

Installation Problems

	Type of defect	Sites affected
	Incorrect placement of condensers (stacking)	3
Outdoor unit	Incorrect support/fastening of condensers (blocks, scrap wood)	3, 12, 21, 10
	Ground clearance of condensers	5, 21, 10
Condensate	Condensate tube drains to improper location	12, 10
	Condensate leak at evaporator	14, 10
	Condensate tubing – flex plastic instead of copper/PVC	3, 21, 10
	Inadequate sealing of wall penetrations	5
Refrigerant Lines	Line cover (or portion) missing	12
	Inadequate or missing refrigerant pipe insulation	5, 14
Other	Refrigerant leak	5, 3
	Damage to evaporator / lubricant leakage	12
	Noisy outdoor unit	10

Takeaways

- Comfort is major motivator
- Design details crucial (aesthetics of line sets) and impacts costs
- QA important
- Occupant education and expectations
- Weatherization underappreciated
- Right sizing possible, but small homes challenging
- Cooling and heating loads similar in attached homes
- If fossil fuel system left in place, good chance it will be used
- Use of multiple systems will increase energy consumption

Ongoing Questions

- What was the cause of low effective COPs?
- Did envelope improvements impact sizing?
- How would using single zone equipment impact costs, design, performance?
- Could integrated controls improve performance?

New Research

• What was the cause of low effective COPs?

New DOE research project to measure in-site performance of ccASHP – 10 sites sought

• Could integrated controls improve performance?

Maximizing the Effectiveness of Ductless Heat Pumps in Existing Homes by Demonstrating Integrated Controls – 12 sites sought

Jordan Dentz, The Levy Partnership, Inc. jdentz@levypartnership.com

Julie Liu, Centsible House julie@centsiblehouse.com

Thank You

Maximizing the Effectiveness of Ductless Heat Pumps in Existing Homes by Demonstrating Integrated Controls

> Jordan Dentz, The Levy Partnership, Inc. jdentz@levypartnership.com

Background

- * Trend to install ASHP to supplement less efficient space conditioning systems
- * Can provide as much as 75% of the space conditioning
- * Evaluations suggest not reaching full potential
- * NYSERDA and Mass Save integrated controls incentive programs

Hypothesis: Integrated controls can boost performance

Objectives

- * Maximize heating load fulfilled by the heat pump
- * Reduce energy cost
- * Maintain comfort
- * Maximum \$500 incremental cost

Technical Solutions

- Forced air homes similar to a two-stage thermostat
- Hydronic homes may include individual radiator control and occupancy sensing or scheduling

One language, a world of possibilities.

With IFTTT (If This Then That) support, it's easy to pair your devices with other IFTTT-enabled products and apps to customize your smart home. Use IFTTT recipes to automatically turn your lights at sumse, or receive a phone call if a leak is detected in your home. The possibilities of IFTTT are endless – how will you use it?

Plan & Results

Plan

- * Install at 12 sites
- Monitor 8-12 months
- * Alternate operation every 2-4 weeks

Smart Home with Vicki

With Vicki and your smartphone, you can control the radiators in every noon of your home. With our intuitive APP, Geolocation and Timers, the control over your home climate becomes easier. Vicki is instaled easily on the radiator, connects with our Vith Interwork and the domestic climate becomes her responsibility.

Results

- Performance data
- Evaluate alternative control strategies
- Modeled impact for NY climates