NESEA BuildingEnergy NYC 26 September 2019

Calculating the carbon content of commercial construction Carbon Counts!

Abstract

- How much carbon dioxide is released into the atmosphere as a result of your new construction project?
- Is it more or less than the emissions from an average project?
- What can you do, at little or no cost to your project, to reduce this carbon bloom?

With the advent of Environmental Product Declarations (EPD's) for most conventional construction materials, it's now possible to calculate the approximate tons of CO2e emitted from the construction of our buildings. This is done using a "carbon pallet" tool developed by the presenter, which will be demonstrated and shared with attendees. We'll see how design changes impact the carbon tally and examine how "biogenic carbon" can reduce net carbon emissions – or even make a building carbon negative.

Agenda

•The Big Picture •LCAs, PCRs and EPDs • Structural Carbon Pallet •Example Building Advanced Ideas •Questions

Carbon Counts! Calculating the carbon content of commercial construction

The Big Picture

2000 Years of CO₂ and Global Temperature

CO₂ Concentration

Temperature

Source: (Temperature) Thompson, et al., Abrupt Tropical Climate Change: Past and Present, *Proc. Natl. Acad. Sci. USA,* vol. 103, no. 28 (CO₂) Australian Academy of Science; Etheridge, et al. (2006), Law Dome CO₂, CH₄ and N₂O ice core records extended to 2000 years BP, *Geophysical Research Letters* 33 ⁶

CO2 Increase Since 1800's

Prior to 1800's

Added 1800's-2019

110 Million Tons of global warming gases emitted by human activities every day

270 ppm to 410 ppm = 52% increase in CO_2

Atmospheric CO₂eq

This graph shows the increase in greenhouse gas (GHG) concentrations in the atmosphere over the last 2,000 years. Increases in concentrations of these gases since 1750 are due to human activities in the industrial era. Concentration units are parts per million (ppm) or parts per billion (ppb), indicating the number of molecules of the greenhouse gas per million or billion molecules of air.

US - GWP Gas Emissions 2014

Climate Leadership and Community Protection Act

- Requires the state to cut **60%** of its statewide carbon emissions (from 1990 levels) by **2030** (or a 40% reduction) and 1**5%** by **2050** (or an 85% reduction) with that remaining 15% from carbon credits.
- NYS is required to produce **70%** of its electricity production from renewable sources by **2030**.
- Carbon emissions in the electricity sector are to be eliminated by **2040**.
- A 22-member climate council made of state agency representatives is charged with ensuring it happens.
- At least 35% of funds from the state's clean energy program are to go toward disadvantaged communities which will be identified by the Department of Environmental Conservation.
- See <u>www.nyrenews.org/what-we-do/</u>

Carbon Counts! Calculating the carbon content of commercial construction

LCAS, PCRS, EPDS

ENVIRONMENTAL PRODUCT DECLARATION

NORTH AMERICAN SOFTWOOD LUMBER

AMERICAN WOOD COUNCIL

Confusing Terms

- Embodied Energy
- Embodied Carbon
- Carbon Sequestration

- Carbon Footprint
- CO₂eq or CO₂eq₁₀₀
- Biogenic Carbon
- LCAs, PCRs, EPDs

Definitions

LCA – Life Cycle Assessment
PCR – Product Category Rules
EPD – Environmental Product Declaration

• **CO₂eq₁₀₀** The global warming potential (GWP) of different greenhouse gases over a 100-year period, a.k.a. CDE100 Life Cycle Assessment (LCA) Ranges
Cradle-to-Gate (fab shop, lumber yard, batch plant)
Cradle-to-Service (incl. shipping, constr., waste)
Cradle-to-Grave

Cradle-to-Cradle

Product Stage				ruction age			End-of-Life Stage				Benefits & Loads			
A1	A2	A3	A4	A4 A5 B1 B2 B3 B4 B5 EXCLUDED FROM THIS S							C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport	Installation	nse	Maintenance	Repair	Replacement	Refurbishment	De-construction	Transport	Waste processing	Disposal	Reuse, recovery, recycling potential

	CARBON PALLET	Pound	ds of CO₂eq	emitted p	er poun	d of building	g material		
	Jim D'Alairia jad@khhpc.com		6-Jul-2019						
	CARBON PALLET - STR								
		Cradls-tu-GaCradls-tu-Finirhod-Buildin hr./c.fbr. CO2+4/IVarto Erumrtr. Err. CO2+4/I							
	MATERIAL						URL Reference, ur Muter		
		145	0.13	5%		0.14			
Diverien 3	Concrete with 500 lbs/CY Portland come Concrete with 400 lbs/CY Portland come		0.13	5%	5% 5%	0.14	uuunmesarafuutsisiitutePDFaasant uuunmesarafuutsisiitutePDFaasant		
	Concrete with 300 lbr/CY Portland come	145	0.10	5%	5%	0.11	UuuunmasarstrutanabiliytEFU/raramt uuuunmasarstrutanabiliytEFU/raramt		
	Grade 60 Reinforcing Barr	495	0.05	5%	5%	0.94	ununarta ara/CERTIFICATION/DOCS/253.EPD far Cancrete Beinfarcing Steeledf		
	drade of Heimrer cing bars	472	0.09	- 20		0.74			
Division 4	CMU: 8" thick	55	0.10	5%	5%	0.11	Azzumedzimilar ta cancrete uith 400 lbz. af coment per cubic yard. Only EPD ir fram individual manufacturerz like Angel Black		
	CMU: 10" thick	65	0.10	5%	5%	0.11			
	Comontitiour grout	145	0.16	5%	5%	0.18	Azzumodzimilar to concrete uith 650 lbz, of coment per cubic yard (proportion-baredzpec)		
Division 5	Structuralsteel - Wide Flange sections	495	1.16	5%	5%	1.28	https://www.aivc.org/alphalarzetr/why-steel/102.1_airc_endfab-sections_20160331.edf		
	Structuralstool - Fabricatedsteel plate	495	1.47	5%	5%	1.62	htter//www.airc.org/alabalazzetr/why-zteol/101.1_airc_eedfab-olate-20160331.edf		
	Stool-HSS (avg)	495	1.76	5%	5%	1.94	uuu.airc.oratead		
	Steel - avg. bldg project (from above 3 li	495	1.25	5%	5%	1.38			
	Open-Web Steel Jairts	495	1.38	5%	5%	1.52	http://freelinist.arafronursorfenviranmental=eradust=deslarationef		
	Cold-formedsteelstuds%track Steel Roof and Floor Deck	495	2.30	5%	5%	2.53	Atter/Hunusteelowtainability.arat/mediatfiliot/tealowtainability/tearsed/02332.ari.sfortwd=track.2015f15.erint=verrim.arboils=se8barb=DB01294EC64AB05027278F174245TD6D8342025		
	Steel Roof and Floor Deck	495	2.37	5%	5%	2.61	http://www.sdi.org/we-content/welpadr/2016/10/101_1_SDIEPDSteel-Roof-and-Floor-Deck_20151215.edf		
D 1 1 1 1 1	WOOD - ASSUMING NO BIOGEN	0.010							
Diobiane	Saftuand Lumber 19% mainture cantent		0.14	102	10%	0.17	http://auc.ora/sdf/arconbuildina/cod/AWC-EPD-SaftuaadLumbor-190328.cdf		
	Softwood Plywood 19% m.c.	36	0.23	102	10%	0.28	Network automate of the consult in a feed AWC - EPD - Softward Plyward - 1992 23-44		
	Oriented Strand Board (OSB) 19% m.c.	44	0.35	10%	10%	0.42	http://aucura/sdf/arcenbuildina/sed/AWC-EPC-05B-190228.edf		
	Glued-Laminated Timber 19% m.c.	39	0.32	10%	5%	0.37	https://aus.mafedf/arcenbuildinafeed/AWC-EPD-Glulum-190323.edf		
	Wood I-Jointy 19% m.c.	38	0.48	5%	5%	0.53	http://aus.orafe.dff.arcenbuildinafee.dfAWO-EPD-IJairy-190328.e.df		
	Nordie X+Lam OLT 19% m.e.	31	0.25	5%	5%	0.28	btter://fisinnevationr.colRerearchProgram/environment/routainability/sed/servaram/Document/environmental/serva/ust/deslaration/nordicy/lam.sdf		
Division 6	WOOD - INCLUDING BIOGENIC					RTICE LIFE			
	Softwood Lumber 19% mainture content		(0.94)	10%	10%	(0.77)	http://duc.ora/edifareenhuildinateed/AWC-EPD-SaftuaadLumber-190328.edf		
	Softwood Plywood 19% m.c.	36	(0.88)	10%	10%	(0.60)	Atter/Aussian and Atteracehold Read AdvC-EPD-SEttung Alforemet-190223.edf Atter/Aussian and Alforeacehold Read AdvC-EPD-SEttung 2023.edf Atter/Aussian and Alforeacehold Read AdvC-EPD-SEttung 2023.edf		
	Oriented Strand Board (OSB) 19% m.c. Glued-Laminated Timber 19% m.c.	44	(0.97) (1.09)	10%	10%	(0.55)	http://www.arafeditareenbuildinareed/wwww.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.arafeditareenbuildinareed/www.http://www.http://www.arafeditareenbuildinareed/www.http://ww		
	Wood I-Jainty 19% m.c.	39	(1.09)	5%	5%	(0.72)	http://www.ardeditareehondinareedrawowlaturuwataruwatareehondia		
	Nordie 8-Lam CLT 19% m.e.	31	(0.94)	5%	5%	(0.67)	$\label{eq:constraints} and a second se$		
	harden camper instate.		(0.74)	- 20		(0.01)			
Other	Straubale	7.0	0.01	5%	5%	0.01			
	Balinguirettier	495	2.83	5%	5%	3.11			
	Comontplarteratucca	60	0.25	5%	5%	0.28			
	Brick	137	0.16	5%	5%	0.17			
	Fiberglazz Batt	1.0	1.40	5%	5%	1.54			
	MinoralFibor	4.0	1.20	5%	5%	1.32			
	EPS	1.0	2.90	5%	5%	3.19			
	XPS	2.0	120.00	5%	5%	132.00			
	Ouenr Carning Faamular 250 XPS	1.6	\$4,70	5% 5%	5% 5%	93.17 3.63	http://www.awenrsemina.sem/NetworkShare/EiS/10019927x20EPDx20-x20F0AMULARx20Invlation.edf		
	Polyizocyanurate Clared-Cell HFC-blown polyurethane	2.2	3.30 120.00	5%	5%	3.63			
	3/4* Comparite Siding	120	0.85	5%	5%	0.94			
	5/8" Gyprum Sheathing	42	0.05	5%	5%	0.54			
	and approximately and a second	- 16							
	NOTES								
	Unreferenced lines are alder data without	at de cum	onto dana ur coa ni	calculatio	n.r				
	Calculations by J. D'Aloisio based on EPD								
				luderamet	hing than t	a campletely i	quare there emizsians. Na industry-uide data is yet available. Alsa, there amaunts vary between projects.		
	1 cubic yard of concrete weight aprox.	3900							
	1 cubic faat af stool woighs apprax.	503	Br.						
	Denrity of steel is 0.291 lbs. / cubic inch								

Carbon Counts! Calculating the carbon content of commercial construction

Structural Carbon Pallet

Gasoline a.k.a. Petrol a.k.a. Motor Spirit

- Weighs 6.30 lbs./gallon
- Combustion of 1 gallon produces about 20 lbs. of CO_2 !

 $2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O$ (octane)

 $C + O_2 \rightarrow CO_2$

12 + (2)(16) = 44

- "Cradle-to-gate" 1 gallon \rightarrow 5 lbs. CO₂
- Combustion 1 gallon \rightarrow <u>20 lbs. CO</u>₂
- "Well to wheel" 1 gallon \rightarrow 25 lbs. CO₂ 4X its weight

Jobsite Emissions

Gasoline – 25 lbs. CO_2 /gallon ("well to wheel")

Hypothetical Labor Situation 12 workers, driving 12 trucks that get 12 mpg, 12 miles to and from jobsite, for 12 weeks....

 $12 \cdot 25 \text{ lbs. CO}_{2}/g/12 \text{ mi./g} \cdot 12 \text{ mi.} \cdot 12 \cdot 5 =$ **18,000 lbs. CO**₂

CO₂e of Portland Cement

Production of Portland cement accounts for 6 to 8%* of the worldwide **anthropogenic** CO₂

- About half is a byproduct of the chemical reaction
- About half is produced by heating 2,700 °F

1 ton of Portland cement produces just under 1 ton of CO_2

Global production of Portland cement is 5% per year

200,000 metric tonnes of CO₂ emitted by producers every hour

Portland cement plant in Alpena, MI

* - the actual percentage is subject to debate

Carbon Pallet - Concrete

- NRMCA EPD's updated Oct. 2016 cradle-to-gate
 - http://www.nrmca.org/sustainability/EPDProgram/
 - Approximations
 - 1.0 lb. CO₂ for every 1 lb. of Portland cement in mix *
 - 0.1 lb. CO₂ for every 1 lb. of concrete placed *
 - Varies from about 350 to 800 lbs. per cubic yard *

* - Not including delivery to jobsite, placement, forms, waste, end-of-life impacts.

Carbon Pallet – Steel

www.asce.org/epd

- AISC EPD's May 2016 Cradle to Gate
 - Hot rolled sections 1.16 lbs./lb. *
 - Hollow structural sections— 1.76 lbs./lb. *
 - Steel plate 1.47 lbs./lb. *
- Estimate 1.5 lbs./lb. structural steel
- Sheet metal 2.37 lbs./lb. *

* - Not including delivery to jobsite, erection, scaffolding, waste, and end-of-life impacts.

Wood – Greenhouse Gas Emissions

- Sourcing is highly variable
 Transportation of forest products
 Management of forest
- Complexity of natural carbon cycle
- Include footprint of construction waste?
- Value of wood's sequestration of carbon in a long-lived and durable building?

http://owic.oregonstate.edu

Carbon Pallet - Wood

AWC EPD's – Apr 2013 – Cradle to Gate

- <u>http://awc.org/greenbuilding/epd</u>
- Softwood Lumber –
 0.15 lbs. CO₂e/lb. wood *

* - Not including delivery to jobsite, erection, scaffolding, waste, sequestration, end-of-life impacts.

www.realoutdoorliving.org

CARBON PALLET - STRUCTURAL MA	TERIALS						
		Cradle-to-Gate	Cradle-to-Finished-Building				
MATERIAL	lbs./c.f.	lbs. CO ₂ eq/lb.	Waste Est.	Constr. Est.	lbs. CO ₂ eq/lb.		
Concrete with 500 lbs/CY Portland cement	145	0.13	5%	5%	0.14		
Concrete with 400 lbs/CY Portland cement	145	0.10	5%	5%	0.11		
Concrete with 300 lbs/CY Portland cement	145	0.08	5%	5%	0.09		
Grade 60 Reinforcing Bars	495	0.85	5%	5%	0.94		
CMU: 8" thick	55	0.10	5%	5%	0.11		
CMU: 10" thick	65	0.10	5%	5%	0.11		
Cementitious grout	145	0.16	5%	5%	0.18		
Structural steel - Wide Flange sections	495	1.16	5%	5%	1.28		
Structural steel - Fabricated steel plate	495	1.47	5%	5%	1.62		
Steel - HSS (avg)	495	1.76	5%	5%	1.94		
Steel - avg. bldg project (from above 3 lines)	495	1.25	5%	5%	1.38		
Open-Web Steel Joists	495	1.38	5%	5%	1.52		
Cold-formed steel framing	495	2.30	5%	5%	2.53		
Steel Roof and Floor Deck	495	2.37	5%	5%	2.61		

CARBON PALLET - STRUCTURAL MA	TERIALS						
		Cradle-to-Gate	Cradle-to-Finished-Building				
MATERIAL	lbs./c.f.	lbs. CO ₂ eq/lb.	Waste Est.	Constr. Est.	lbs. CO ₂ eq/lb.		
WOOD - ASSUMING NO BIOGENIC CARBON							
Softwood Lumber 19% moisture content	32	0.14	10%	10%	0.17		
Softwood Plywood 19% m.c.	36	0.23	10%	10%	0.28		
Oriented Strand Board (OSB) 19% m.c.	44	0.35	10%	10%	0.42		
Glued-Laminated Timber 19% m.c.	39	0.32	10%	5%	0.37		
Wood I-Joists 19% m.c.	38	0.48	5%	5%	0.53		
Nordic X-Lam CLT 19% m.c.	31	0.25	5%	5%	0.28		
WOOD - INCLUDING BIOGENIC CARBON, REDU	CED FOR E	ND-OF-SERVICE LI	FE				
Softwood Lumber 19% moisture content	32	(0.94)	10%	10%	(0.77)		
Softwood Plywood 19% m.c.	36	(0.88)	10%	10%	(0.60)		
Oriented Strand Board (OSB) 19% m.c.	44	(0.97)	10%	10%	(0.55)		
Glued-Laminated Timber 19% m.c.	39	(1.09)	10%	5%	(0.72)		
Wood I-Joists 19% m.c.	38	(1.06)	5%	5%	(0.53)		
Nordic X-Lam CLT 19% m.c.	31	(0.94)	5%	5%	(0.67)		

CO2eq's of Other Materials & Systems

- Exteriors: bricks, rainscreen panels
- Interiors: finishes and furnishings
- Fenestration
- Insulation
- MEP, FP equipment, elevators, process equipment, etc.

- Sitework: asphalt, concrete, grading
- Construction equipment & services
- Design-phase emissions

...and Operations

Insulation Material	R-value R/inch	Density Ib/ft³	Emb. E MJ/kg	Emb. Carbon kgCO ₂ /kg	Emb. Carbon kgCO ₂ / ft ² •R	Blowing Agent (GWP)	Bl. Agent kg/kg foam	Blowing Agent GWP/ bd-ft	Lifetime GWP/ ft²•R
Cellulose (dense-pack)	3.7	3.0	2.1	0.106	0.0033	None	0	N/A	0.0033
Fiberglass batt	3.3	1.0	28	1.44	0.0165	None	0	N/A	0.0165
Rigid mineral wool	4.0	4.0	17	1.2	0.0455	None	0	N/A	0.0455
Polyisocyanurate	6.0	1.5	72	3.0	0.0284	Pentane (GWP=7)	0.05	0.02	0.0317
Spray polyure- thane foam (SPF) – closed-cell (HFC-blown)	6.0	2.0	72	3.0	0.0379	HFC-245fa (GWP=1,030)	0.11	8.68	1.48
SPF – closed-cell (water-blown)	5.0	2.0	72	3.0	0.0455	Water (CO ₂) (GWP=1)	0	0	0.0455
SPF – open-cell (water-blown)	3.7	0.5	72	3.0	0.0154	Water (CO ₂) (GWP=1)	0	0	0.0154
Expanded polystyrene (EPS)	3.9	1.0	89	2.5	0.0307	Pentane (GWP=7)	0.06	0.02	0.036
Extruded polystyrene (XPS)	5.0	2.0	89	2.5	0.0379	HFC-134a ¹ (GWP=1,430)	0.08	8.67	1.77

GWP of Insulation Types

New options: GPS rigid insulation and rigid-board phenolic foam!

> Source: BuildingGreen

1. XPS manufacturers have not divulged their post-HCFC blowing agent, and MSDS data have not been updated. The blowing agent is assumed here to be HFC-134a.

XPS and Global Warming

As of 2018 most Extruded Polystyrene (**XPS**) produced in the U.S. uses HFC 134a as a blowing agent. This gas has a GWP rating (over 100 years) of 1,430 - it has 1,430 times more global warming potency than CO₂. The gas never breaks down, remaining active in the atmosphere for thousands of years.

The EPA has drafted a policy curtailing its use, but its adoption is on hold. Alternates to this blowing agent are available, and used in the EU, but they are more expensive.

Carbon Counts! Calculating the carbon content of commercial construction

Example Building

100,000 sf, 10-Story Mixed-Use Building Conventional Construction – structure only

- 20 ga. steel roof deck
- Open-web steel roof joists
- Structural steel framing w/concrete shear walls
- Composite steel deck floors
- Cold-formed steel wall studs
- 5" conc. 1st floor slab on grade
- Strip footings + foundation walls
- Interior spread footings

100,000 sf, 10-Story Mixed-Use Building Conventional Construction – structure only

MATERIAL							lbs. CO2eq/lb	lbs. CO2eq	
20 ga. steel roof decking	10,000	sf	2.2	psf	22,000	lbs.	2.61	57,420	
Open-web steel roof joists	10,000	sf	2.7	psf	27,000	lbs.	1.52	41,040	
Structural steel framing (incl. shear conn's)	100,000	sf	8.7	psf	870,000	lbs.	1.38	1,200,600	
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270	
Cold-formed steel wall studs	150,000	sf	0.4	psf	60,000	lbs.	2.53	151,800	
Shear walls, 80 lf, 12"t, 4000 psi	9,600	sf	356	су	1,386,667	lbs.	0.14	194,133	
2-10th fl. conc - 3.5" eff. t, 4000 psi	90,000	sf	972	су	3,791,667	lbs.	0.14	530,833	
1st floor conc slab - 5" 4000 psi	10,000	sf	154	су	601,852	lbs.	0.14	84,259	
Strip ftgs, fd'n walls, 4000 psi	2,704	sf	160	су	623,362	lbs.	0.14	87,271	
Int. ft'gs, piers 12 x 8'x8'x18", 4000 psi	768		51	су	199,680	lbs.	0.14	27,955	
Steel rebar, assume 0.7% conc vol.	2.6	су	69	cf	34,733	lbs.	0.94	32,649	
								2,948,231	lbs. CO2
								29.48	psf

Incremental Improvements

- Reduction of steel roof deck gage
- Optimized structural steel framing
- Supplemental Cementitious Materials (SCM) cement redux
- Reduced concrete strength Portland cement redux
- Frost-protected shallow foundations (FPSF)
- Wood wall studs

100,000 sf, 10-Story Mixed-Use Building Incremental Improvements – structure only

- 20 ga. steel roof deck
- Open-web steel roof joists
- Structural steel framing
- 2nd floor composite steel deck
- Cold-formed steel wall studs
- 5" conc. 1st. floor slab on grade
- Strip footings + foundation walls -
- Interior spread footings

 \rightarrow 22 ga. steel roof deck

- \rightarrow 10% material optimized
- \rightarrow 20% SCM, cement redux
- \rightarrow Wood wall studs
- → 4", 20% SCM, cement redux
- IIs \rightarrow FPSF, 20% SCM, cem. redux
 - \rightarrow 20% SCM, cement redux

Steel Lateral Bracing Systems

Steel Moment Frames require more steel material per service unit than braced frames.

Braced frames can be designed in a variety of configurations.

Consider Hybrid Masonry/Steel Frames.

Supplementary Cementitious Materials Fly Ash (SCMs)

- Byproduct of coal-fired electric and steam generating plants
- Type C and Type F both used for concrete
- 15 25% cement replacement, typical
- Ground Granulated Blast-Furnace Slag (GGBFS)
 - Co-generated during the refinement of iron from iron ore
 - Must be ground to cement-grain fineness
 - Effect on concrete is similar to Fly Ash
 - 25 50% cement replacement, typical

<u>Others</u>

- Silica Fume
- Rice Hull
- Ground Glass
- More

FlyAsh Types C or F

- The use of fly ash in concrete:
 - Reduces permeability
 - Slightly delays strength gain
 - Slightly reduces shrinkage
 - Reduces heat of hydration
 - Increases workability
 - Increases resistance to ASR
 - Slightly higher ultimate strength
 - Reduces and delays bleeding
- Other Effects
 - Reduces the amount of CO₂ generated
 - Reduces the amount of waste disposed in landfills
 - May reduce cost

Frost-Protected Shallow Foundations

- Strategically placed rigid insulation and drainage fill
- Reduces depth of excavation, backfill, foundation material
- Schemes for both heated and unheated buildings and elements

Frost-Protected Shallow Foundations

<u>LEFT</u>: Conv. Ftg/fdn wall

Aconc = 7.5 sf/ft.

<u>**RIGHT</u>**: FPSF Aconc = 2.6 sf/ft.</u>

65% redux of conc!

FPSF and Energy Code Thermal Design

ASCE STANDARD American Society of Chill Englishers **Design and Construction** of Frost-Protected Shallow Foundations Same.

COLUMN IN A

100,000 sf, 10-Story Mixed-Use Building EZPZ Incremental – structure only

MATERIAL							lbs. CO2eq/lb	lbs. CO2eq	
22 ga. steel roof decking	10,000	sf	1.8	psf	18,000	lbs.	2.61	46,980	
Open-web steel roof joists	10,000	sf	2.6	psf	26,000	lbs.	1.52	39,520	
Structural steel framing (19% optimized)	100,000	sf	7.9	psf	790,000	lbs.	1.38	1,090,200	
Composite steel floor decking	90,000	sf	2.3	psf	207,000	lbs.	2.61	540,270	
2x4 / 2x6 wall studs - 22% framing factor	150,000	sf	3.2	psf	484,000	lbs.	0.17	82,280	
Shear walls, 80 lf, 12"t, 4000 psi, 20% SCM	9,600	sf	356	су	1,386,667	lbs.	0.11	152,533	
2-10th fl. conc - 3.5" eff. t, 3000 psi, 20% SCM	90,000	sf	972	су	3,791,667	lbs.	0.09	341,250	
1st floor conc slab - 4" 3000 psi, 20% SCM	10,000	sf	123	су	481,481	lbs.	0.09	43,333	
Strip ftgs, FPSF fd'n walls, 3500 psi, 20% SCM	1,664	sf	82	су	319,673	lbs.	0.1	31,967	
Int. ft'gs, 12 x 8'x8'x18", 3500 psi, 20% SCM	768	sf	43	су	166,400	lbs.	0.1	16,640	
Steel rebar, assume 0.7% conc vol.	8.5	су	231	cf	116,012	lbs.	0.94	109,051	
								2,494,025	lbs. CO2
								24.94	psf

Concrete Optimization

Conventional spread footings require full depth at face of piers only. Top surfaces can be thinner at edges. 20% concrete redux.

Transformative Improvements

• Wood framing

- Glulam, microlam, CLT
- TGI floor and roof joists
- Plywood / OSB floor and roof decking
- Higher percentage of SCM greater cement redux
- Frost-protected shallow foundations (FPSF)
- Optimized foundation design

Cross-Laminated Timber

- Pre-manufactured laminated panels for walls, floors, roofs
- Solid wood resists heat flow, contributes to thermal mass
- Fire tests are encouraging
- Hybrid podium systems lower levels of concrete or steel
- Other wood-based structural systems exist, including Woodcube, Massivtre

Cross-Laminated Timber

University of Massachusetts Design Building, Amherst, MA

Structural Engineer: Simpson Gumpertz & Heger Architect: Leers Weinzapfel

The Near Future (2022): CLT in the NE!

<u>IBC 2021</u>

Approved Dec 2019

- Type IV-A Wood buildings up to 18 stories tall
- Type IV-B Wood buildings up to 12 stories tall
- Type IV-C Wood buildings up to 9 stories tall

CLT Plant Opening in Maine

100,000 sf, 10-Story Mixed-Use Building Transformative Improvements – structure only

- 20 ga. steel roof deck
- Open-web steel roof joists
- Structural steel framing
- 2nd floor composite steel deck
- Cold-formed steel wall studs
- 5" conc. 1st. floor slab on grade
- Strip footings + foundation walls
- Interior spread footings

 \rightarrow CLT decking

- → Glulam roof beams
- → Glulam beams and columns
- \rightarrow CLT decking w/conc. topping
- \rightarrow CLT exterior walls
- \rightarrow 4", 30% SCM, cement redux
- n walls \rightarrow FPSF, 30% SCM, cem. redux
 - → 30% SCM, cem. redux, opt.

100,000 sf, 10-Story Mixed-Use Building Transformative – structure only

MATERIAL							lbs. CO2eq/lb	lbs. CO2eq	
5-ply CLT (6 7/8") roof and floor decking	100,000	sf	17.8	psf	1,776,042	lbs.	0.28	497,292	
7-ply CLT (9 5/8) wall panels 20% WWR	39,936	sf	24.9	psf	992,992	lbs.	0.28	278,038	
Glulam roof and floor beams - 5 1/2" x 14"	12,000	lf	20.9	plf	250,250	lbs.	0.37	92,593	
Glulam columns - est. 12 int, avg. 5 1/2" X 16"	1,440	lf	22.2	plf	31,964		0.37	11,827	
Steel composite floor ties	90,000	sf	1.2	psf	108,000		2.53	273,240	
Steel conn hardware for glulam, 10 lbs. ea.	1,680	pcs	10	lbs.	16,800		1.62	27,216	
2-10th fl. conc - 2" t, 3000 psi, 30% SCM	90,000	sf	556	су	2,166,667	lbs.	0.08	173,333	
Shear walls, 80 lf, 12"t, 4000 psi, 30% SCM	9,600	sf	356	су	1,386,667	lbs.	0.1	138,667	
1st floor conc slab - 4" 2500 psi, 30% SCM	10,000	sf	123	су	481,481	lbs.	0.07	31,296	
Strip ftgs, FPSF fd'n walls, 3500 psi, 30% SCM	2,704	sf	133	су	519,468	lbs.	0.08	41,557	
Int. ft'gs, optimized 3500 psi, 30% SCM	768	sf	34	су	133,120	lbs.	0.09	11,981	
Steel rebar, assume 0.7% conc vol.	8.4	су	227	cf	114,261	lbs.	0.94	107,405	
								1,684,445	lbs. CO2
								16.84	psf

Biogenic Carbon

- Carbon comprises about 50% of the mass of dry wood fiber.
- 1 lbs. Carbon in wood represents about 3.67 lbs. of CO₂ removed from the atmosphere.

• <u>Example</u>

100 lbs. of 19% moisture content wood Dry wood fiber = (100 lbs.)(1/1.19) = 84 lbs. Sequestered CO₂ = (84 lbs.)(.5)(3.67) = 154 lbs. 1 lb. wood stores about 1.5 lbs. of atmospheric CO₂

... Not including emissions at the end of the product's life.

100,000 sf, 10-Story Mixed-Use Building									
Transformative – structure only									
INCLUDING BIOGENIC CARBON and END-OF-LIFE IMPACTS									
MATERIAL							lbs. CO2eq/lb	lbs. CO2eq	
5-ply CLT (6 7/8") roof and floor decking	100,000	sf	17.8	psf	1,776,042	lbs.	-0.67	(1,189,948)	
7-ply CLT (9 5/8) wall panels 20% WWR	39,936	sf	24.9	psf	992,992	lbs.	-0.67	(665,305)	
Glulam roof and floor beams - 5 1/2" x 14"	12,000	lf	20.9	plf	250,250	lbs.	-0.72	(180,180)	
Glulam columns - est. 12 int, avg. 5 1/2" X 16"	1,440	lf	22.2	plf	31,964		-0.72	(23,014)	
Steel composite floor ties	90,000	sf	1.2	psf	108,000		2.53	273,240	
Steel conn hardware for glulam, 10 lbs. ea.	1,680	pcs	10	lbs.	16,800		1.62	27,216	
2-10th fl. conc - 2" t, 3000 psi, 30% SCM	90,000	sf	556	су	2,166,667	lbs.	0.08	173,333	
Shear walls, 80 lf, 12"t, 4000 psi, 30% SCM	9,600	sf	356	су	1,386,667	lbs.	0.1	138,667	
1st floor conc slab - 4" 2500 psi, 30% SCM	10,000	sf	123	су	481,481	lbs.	0.07	31,296	
Strip ftgs, FPSF fd'n walls, 3500 psi, 30% SCM	2,704	sf	133	су	519,468	lbs.	0.08	41,557	
Int. ft'gs, optimized 3500 psi, 30% SCM	768	sf	34	су	133,120	lbs.	0.09	11,981	
Steel rebar, assume 0.7% conc vol.	8.4	су	227	cf	114,261	lbs.	0.94	107,405	
								(1,253,751)	lbs. CO2
								(12.54)	psf

Example Building Summary

- Conventional 2,950,000 lbs. CO2eq 29.5 lbs./sf
- Incremental 2,490,000 lbs. CO2eq 24.9 lbs./sf
- Transformative 1,680,000 lbs. CO2eq 16.8 lbs./sf
- Transformative (-1,250,000) lbs. CO2eq -12.5 lbs./sf * Including Biogenic Carbon *

Bloomage vs. Leakage - BLOOMAGE

Calculate UA TOTAL (Heat only)	AREA	R	U	UA
ROOF	10000	30	0.033	333
OPAQUE WALLS	40000	20	0.050	2000
FENESTRATION	10000	2.8	0.357	3571
TOP OF FOUNDATION	400	10	0.100	40
SHELFANGLES	3690		0.390	1439
CONVECTIVE LOSSES				2500
TOTAL				9884 52

Bloomage vs. Leakage: Total Annual Heating Energy

Eannual = Utotal X 24 hrs/day X HDD / efficiency

HDD - Heating degree-days are the number of degrees that the daily average temperature falls below 65° F - 4777° F days in NYC

Base Building

Assume 90% heating system efficiency 9884 Btu-hr/ FX 24 hrs/day X 4777° F days / 0.9 = 1,260 MMBtu per year required for heating 1,260 / 100,000 sf floor area = 12,600 Btu/sf

Bloomage vs. Leakage: Quantify CO2eq Emitted from Heating

Natural Gas creates 117 lbs. CO₂e per MMBtu (http://www.eia.gov/tools/faqs/faq.cfm?id=73&t=11)

1260 MMBtu / year X 117 lbs. $CO_2 eq$ /MMBtu

= 147,000 lbs. CO₂eq /year for heating 50,800 / 100,000 sf floor area = 1.47 lbs./sf

Bloomage vs. Leakage

Carbon Counts! Calculating the carbon content of commercial construction

Advanced Ideas

Tall Wood Buildings – Portland, OR

Carbon12 – 8story glulam and CLT building completed in 2017

(Courtesy treesource.org)

Tall Wood Buildings – BC Canada

Concrete Exposure Classes

- Freeze-Thaw Exposure Class F1 (moderate)
 - Concrete exposed to freezing and thawing cycles and occasional exposure to moisture and no deicing salts are used.
 - Min *f* ′c = 4500 psi
- Corrosion Protection Exposure Class C2 (severe)
 - Concrete exposed to moisture and an external source of chlorides in service from deicing chemicals, salt, brackish water, seawater or spray from these sources.
 - Min *f* ′ c = 5000 psi
- Crystalline waterproofing admixtures and topical applications do they change exposure class?

Concrete Slabs on Grade: How Strong Must the Concrete Be? Typical Concrete Slab Strength: 3000 psi 3000 lbs./in² X (12 in./ft.)² = 432,000 psf **Typical Floor Live Loading:** 100 psf 432,000 psf / 100 psf = 4,320 use a 2.0 FoS.... * Most concrete slabs on grade are at least 2,000 times stronger than their required strength! *

60

Concrete Slabs on Grade: Alternatives to the Conventional

STANDARD 5" standard concrete on

compacted subbase

Concrete Type, Cement Amount	CO₂-e per SF (cradle-to-gate)					
4000 psi, 450 lbs./CY	6.9					
3000 psi, 350 lbs./CY	5.4 (22% redux)					
3000 psi, 20% SCM, 280 lbs./CY	4.3 (38% redux)					

<u>ALTERNATIVE</u>

4" low-strength concrete with superplasticizer on compacted subbase w/ 3/8" underlayment topping

Concrete Type, Cement Amount	CO₂-e per SF (cradle-to-gate)
2000 psi, 50% SCM, 150 lbs./CY	1.8 (70% redux)
500 psi, 50% SCM, 50 lbs./CY	0.62 (91% redux)

Alternative Cements

- Hybrid cement
- Alkali cements
 - Alkali-Activated Cements (AAC)
 - Aluminosilicate-based alkaline cements
- Geopolymer cements
- Sulfur cement
- Fly ash cement
- Calcium sulfoaluminate-based cements
- Gypsum cements

Dowel-Laminated Timber

Energy Innovation and Carbon Dividend Act – H.R. 763

- EFFECTIVE will reduce CO₂ emissions by 40% in first 12 years
- GOOD FOR PEOPLE increased health, more \$ for lower income
- GOOD FOR THE ECONOMY 2.1 million new jobs, increased GDP
- BIPARTISAN Cosponsored by Republicans and Democrats
- REVENUE NEUTRAL No \$ kept or spent by the government

Questions?

Carbon Counts! Calculating the carbon content of commercial construction

Thank you!

The Role of the Engineer

