

Electrify Your Health!

How Public Health Research Can (and Should) Influence Your Buildings

Learning Objectives

- Identify top health concerns in buildings through recent public health research
- Understand the relationship between energy performance and health
- Describe how going all-electric can improve health in buildings
- Recognize resources that are available to promote the design of healthy buildings

BUILDINGENERGY NYC THURSDAY, SEPTEMBER 26, 2019 • NEW YORK, NY • NESEA.ORG/BENYC19

How do buildings impact human health?

"We shape our buildings, and afterwards our buildings shape us" -Winston Churchill

Lauren Hildebrand, Steven Winter Associates, Inc. Sustainability Director

Why I Care

Why YOU Should Care

F

- **90%** Time we spend indoors
- **75%** Deaths caused by chronic disease, up from 13% in 1800
- 85% Of the 82,000 chemicals in use lacking available health data

Today's kids are the first generation expected to have shorter life expectancy than their parents

Source: Fitwel Ambassadors Training Video 2017

What determines health outcomes?

- >5% Genetics/biology
- ≈20% Lifestyle/behavior
- ≈20% Medical care

=

≈55% Physical & social environment

It's not your genetic code... it's your zip code!

Source: https://www.cdc.gov/nchhstp/socialdeterminants/faq.html

Health in the Headlines

F

ndustry's Push sy ERIC LIPTON		Healthful Place to Work
)ctober 21,	The Kite	hen as a Pollution Hazard
1	🚩 Email	By midmorning, the smell of hot peanut oil dissipated and inside the
	f Share	tightly sealed laboratory known as Building 51F, a pink hamburger sizzled
	y Tweet	in a pan over a raging gas flame. Overhead, fans whirred, whisking
	Save Save	caustic smoke up through a metallic esophagus of ductwork.
	More	Woody Delp, 49, a longhaired engineer in glasses — the Willie Nelson of HVAC — supervised the green
		bean and hamburger experiments. He sat at a computer inside a
	Scion	kitchen simulator. rows upon rows of numeric data appearing on Mayor de Blasio, center, expressed his frustratio Monday about "mistakes that ware a blasio.

EPA: Human Health is affected by...

- Environmental Tobacco Smoke 40,000 deaths/year just secondhand
- Biological contaminants mold, pollen, dander, bacteria, viruses
- Combustion byproducts Effective kitchen exhaust?
- Household products/practices Harder to clean surfaces = more chemicals

cont'd: Human Health is affected by...

- Toxic materials Living Building Institute resource
- Radon
 22,000 deaths/yr in US
- Safety and security Creative solutions
- Diet & Exercise Encourage movement, health

Source: EPA, CDC and others

Reasons for Hope: We know more now than ever!

Five Ways Electrification Improves Human Health

1. It's Cleaner

• Improved Air Quality

2. It's More Comfortable

Moisture/Temp/Humidity Control

3. It's Quieter

- Improved Acoustics
- 4. It's Safer
 - Lower CO & Fire risk
- 5. BONUS: It's More Cost Effective!
 - Energy & Health ROI

1. It's Cleaner

Indoor Air Quality

90% of our lives spent indoors 2-5x More pollution indoors than outdoors

Common Indoor Air Pollutants

Airborne Particles from diesel, exhaust, dust, smoke and other sources

Indoor Formaldehyde from building materials, furniture, cooking, and smoking

Household Odors & Gases from activities such as painting, cooking, and smoking

DR OCKERS.com

Ozone from outdoor air (ground level ozone is harmful to breathe) Carbon Dioxide from people exhaling and cooking

Pollutants (Indoor, Outdoor, Both)

- Particulate matter (PM10, PM2.5, Ultrafine particles, Metals, Acids, Condensed organics)
- Nitrogen dioxide (NO2)
- Ozone

Ţ

- Carbon monoxide (CO)
- Radon
- Pests. Pets. Kids?

- Mold and dampness
- Allergens in air and dust
- Gas-phase organics (VOC) (Formaldehyde ,Other aldehydes, Benzene, Acrolein, Organic acids, Semivolatile organics (SVOC))
- Bioeffluents including CO2

Pollution Is Destroying Our Health!

F

- 9 out of 10 people now breathe polluted air
- 93% of children <15 years old (= 1.8 BILLION) breathe toxic air
- Air pollution kills 7 million people every year
- 1/3 of deaths from stroke, lung cancer and heart disease are due to air pollution

Source: World Health Organization

Fossil Fuel Pollution Impacts Our:

• Respiratory system:

- Lung Cancer leading cause of cancer in the U.S.
- COPD 3rd leading cause of death
- Asthma

F

• Circulatory system:

• Coronary heart disease - leading cause of death in the U.S.

• Nervous system:

- Strokes
- Loss of intellectual capacity from mercury exposure poisoning

Source: American Council for an Energy Efficient Economy and by the Physicians for Social Responsibility

Especially in Kitchens...

- 60% of homes that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors. That equates to:
- 12 million Californians routinely exposed to nitrogen dioxide levels that exceed federal outdoor standards
- 10 million exposed to formaldehyde exceeding federal standards
- 1.7 million exposed to carbon monoxide exceeding ambient air standards in a typical week in winter.

Source: LBNL Berkeley Lab

Pollution Makes you Dumber

75% of the global population is breathing unsafe air Study found that high pollution levels led to significant drops in test scores in language and arithmetic Equivalent to having lost one year ofeducation

Source: Proceedings of the National Academy of Sciences

F

Combustion Byproducts – Kitchen Exhaust

F

- Poorly vented appliances release toxic fumes, CO
- "Room" exhaust is not great (but allowed)... couple with charcoal recirc hood
- Hoods should cover all burners, and be placed as low as practical for capture
- Consider NOISE & CONTROLS for better usability
- 150 cfm is probably plenty
- Start thinking about makeup air in tight homes

Kitchen Exhaust, Good to Best

- Ducted kitchen exhaust
- Ducted range hood
- Range hood placed for effective capture
- Effective range hood < 2 sone and > 200
- All that interlocked with cooktop or sensors
 - ELECTRIC

Bring in (and Treat) Fresh Air

The Solution to Pollution is Dilution!

- Balanced ventilation strongly
 preferred. Heat Recovery/Energy
 Recovery even better!
- Fresh air is expensive... distribute it wisely
- Always check the controls at installation. If the contractor can't explain it to you, he can't explain it to the building manager either.
- Shut-offs are important (skunks, fire, asphalt)
- Test/Balance/Test/Maintain

Don't Forget the Filters!

- MERV 13 is the lowest that can meaningfully capture PM 2.5
- Pleated, 2" or 4" thick
- Charged/"Electret" can help with pressure drop
- Filter Grille design... do not allow bypass, leave access
- Grille/filter sizing... likely larger than you think to keep pressure drop in check
- Filters must be changed often!

2. It's More Comfortable

Humidity/Temp/Moisture Control

- In addition to proper air sealing & water management, all electric buildings can be:
 - Warmer
 - Dryer
 - Better Ventilated
 - Lowers risk of illnesses and mold growth
- Replace gas fired domestic hot water and space heaters with electric DHW and heat pump
- Independently control temperature in each room – decentralized

3. It's Quieter

Manage Noise, Manage Stress

=

TARGET LEVELS20 dB Bedrooms40 dB Living rooms

Heat Pumps Can be Quieter

- Indoor air handler part of a heat pump is generally quieter than single-stage gas furnaces. Hydronic type heaters function in near silence (if installed correctly).
- Steam radiators eliminate constant "clang"

Other Recommendations:

- Use air sealing and sound attenuation to separate multi-dwelling units
- Choose fans based on sone ratings
- Remote-mount fans
- Study 'free area' for grilles and louvres to avoid whistling
- Test background sound!

4. It's Safer

Safety: Less Gas, Less Worry

F

- Less Risk of Carbon Monoxide Poisoning
 - Still recommend CO monitors in all units
- Fire & Explosion Safety
 - Clothes Dryers: check your ductwork
 - Gas Cooktops: it's a mini fire in your house!
 - DHW: Your chances of an explosion from a gas leak are much greater than electrocution from faulty wiring to your tank.

5. It's MoreCost Effective& Equitable

Ţ

Leverage the Value of PEOPLE in Buildings

Source: WGBC's Health, Wellbeing & Productivity in Offices

Our Employees Will Be Happier

F

Employees are Happier, Healthier, More Productive in LEED Green Buildings:

- 93%: of those who work in LEED buildings are satisfied with their job
- 81%: enhanced air quality improves their physical health and comfort
- 85%: access to outdoor views and natural sunlight boosts productivity and happiness
- 79%: employees opt for a job in a LEED building vs non-LEED building

Our Residents Will Breathe Easier

 2-yr study of effects of green building on building residents with asthma

=

- Evaluated ER visits, sleepless nights, days with reported symptoms
- Days with asthma symptoms decreased, 6.9 to 3.4 at 6 months and 2.2 at 12 mos

Good fresh air makes YOU smarter

Source: **#THECOGFXSTUDY**

F

In other words...Healthy Buildings = PROFIT

TOTAL BENEFITS DUE TO INVESTMENT IN HPBS

F

FIGURE 14 (referenced in Section 4.5)

Cumulative financial benefit of HPBs due to enhanced productivity, increased retention, and reduced absenteeism (assuming 150,000 SF space housing 820 employees)

A reminder about Asthma \$\$\$

F

- People/yr treated for asthma: 15.4 million
- US total annual cost in 2015: \$81.9 billion
- Asthma-related mortality cost: \$29 billion/year
- Missed work & school days: \$3 billion/yr
 - 8.7 million workdays lost
 - 5.2 million school days lost

Health Based Building Incentives

- (NY)SERDA and DOH's NYS Healthy Homes Pilot
 - Pilot will test a residential "healthy homes" intervention that combines energy efficiency measures, asthma trigger reduction measures, and home injury prevention measures provided to a group of 500 Medicaid member households in several pilot locations throughout the State.
- Enterprise's Health Begins with Home Initiative
 - \$250 million to work over 5 years promoting health as a top priority in affordable housing
- Get More Utility Providers Involved
- Insurance Underwriting

Ę

Pick your reason(s)

Studying The Optimal Ventilation for Environmental Indoor Air Quality: STOVE IAQ

Elizabeth Garland, MD, MS Department of Environmental Medicine and Public Health

Purpose of the Study

- Multicity collaboration
- Enterprise Green Community Partners
- National Center for Healthy Housing
- Determine if ASHRAE 62.2 (2010 or later) in multifamily Green Communities housing is associated with:
- ►variations in indoor air quality
- ▶ general health measures

Study Hypothesis

Multifamily Green Communities housing with ASHRAE-compliant ventilation will have:

Significantly lower indoor levels of

- -PM_{2.5}
- -Formaldehyde
- -NO2
- -CO
- $-CO_2$

Resulting in better general and respiratory health

Eligibility of Buildings

- Multifamily housing units previously rehabilitated to Green standards within the past 5 years
 Working gas stove
 Open to all people
- National Center for Healthy Housing and Enterprise Green Communities confirm eligibility

Study and Comparison Groups

Study group:

ASHRAE-compliant buildings
-continuous or intermittent (e.g., 20 minutes/hour)
ventilation in each dwelling
-exhaust ventilation over stoves

► Comparison group:

-Non-ASHRAE-compliant building

Phases

RecruitmentScreening- determine eligibility

>Three phases:

- -Baseline
- -4 months after baseline
- -8 months after baseline

Study Methods

- Screen: meet inclusion criteria
- ► Home Interview
- ► Health Interview
- Environmental Assessment
- ► Visual Assessment
- ► Dwelling performance

Dwelling Performance

Unit characteristics
Duct System
Ventilation Flows
Pressures
Microsoft Access

Conducted by independent contractor at baseline

Home Interview

► Questions answered by primary adult

► Contains questions about:

- -Household income
- -Housing conditions
- -Pets
- -Pests
- -Comfort
- -Safety
- -Smoke in the home

Health Interview

▶ **Respiratory:** Asthma, allergies, nasal

►Adult:

-SF-36, health-related-quality of life

-smoking

-stress

-Medical conditions (e.g., COPD)

►Child:

-SF-12

-smoking (if age≥12)

-Medical conditions (e.g., ear infections)

In general, would you say your health is:

- 1 Excellent
- 2 Very good
- 3 Good
- 4 Fair
- 5 Poor

F

Bill Walsh

HEALTH, EQUITY & ETHICS: Strategies For Addressing High GWP & Toxic Chemicals In Insulation

BUILDINGENERGY NYC

THURSDAY, SEPTEMBER 26, 2019 • NEW YORK, NY • NESEA.ORG/BENYC19

Mission

To advance human and environmental health by improving hazardous chemical transparency and inspiring product innovation.

Chemicals Of Concern

- Persistent, Bioaccumulative Toxicants (PBTs)
- Halogenated flame retardants
- Formaldehyde-based binders
- Isocyanates
- High Global Warming Potential

Health Impacts

- Cancer
- Reproductive Capacity
- Brain Development
- Asthma & Respiratory Disease
- Climate Change

Impacted Communities

- Building Occupants
- Construction Workers
- Manufacturing Workers
- Fenceline Communities
- Poor & People of Color
- Global Environment

Centering Equity in the Sustainable Building Sector

"Whether it's as policymakers, advocates, architects, project managers, contractors, or even in the construction workforce, the most impacted communities are underrepresented in the design, construction, and occupancy of sustainable, regenerative, healthy buildings."

Strategies For Chemical Hazards

In Depth Analysis

Multi-factor Product Evaluation

Making Affordable Multifamily Housing More Energy Efficient

A Guide to Healthier Upgrade Materials

Health- Based Ranking (Green is best; red is worst)	Insulation Type	R-Value per Inch*	Relative Installed Cost per R-Value**	Special Installation Equipment Required	Vapor Retarder^	Air Barrier Material^^	Level of Transparency on Chemical Content^^^ (Less shading indicates more transparency within a product type)
	Expanded Cork Board	3.6-4.2	\$\$\$\$	no	Class III	Information not available	
1200	Blown-In Fiber Glass						
	Loose-Fill Fiber Glass	2.2-3.1	\$	yes	Vapor permeable	Not an air barrier	
	Dense-Pack Fiber Glass	3.7-4.6	\$-\$\$	yes	Vapor permeable	Not an air barrier but does reduce airflow	
	Spray-Applied Fiber Glass	4.0-4.3	\$-\$\$	yes	Vapor permeable	Not an air barrier but does reduce airflow	
	Fiber Glass Batts/ Blankets (Kraft- Faced and Unfaced)	2.9-4.3	\$	no	Kraft-faced: Class II; Unfaced: Vapor permeable	Not an air barrier	
	Fiber Glass Batts/ Blankets (PSK or FSK-Faced, Basement Wall Insulation)	Duct wrap: 2.7-3.2 [#] Basement wall insulation: 3.0-3.5	\$-\$\$	no	Class I (except basement wall insulation where facing is perforated to allow for moisture transfer)	Facing may be an air barrier material	
	Cellulose/Cotton Batts and Blankets (Unfaced)	3.5-4.0	\$\$-\$\$\$	no	Vapor permeable	Not an air barrier	

Guidance for Specifying Healthier Insulation and Air-Sealing Materials

- Recommendations by
 - Product Category
- Spec Language
- Submittal Inserts

Cork

Blown-In Fiber Glass (Loose Fill, Dense Pack, and Spray-Applied)	*
Kraft-Faced and Unfaced Fiber Glass Batts	*
Jnfaced Cellulose/Cotton Batts	*
Blown-In Cellulose (Loose Fill, Dense Pack, and Wet-Blown)	*
PSK or FSK-Faced Fiber Glass Batts or Blankets	*
Mineral Fiber Batts and Boards	*
iber Glass Board (Duct Insulation)	*
Polyisocyanurate	*
Expanded Polystyrene (EPS)	*
Extruded Polystyrene (XPS)	*
Spray Foam Insulation (SPF)	~

~

Recommended Materials

In Summary

INSULATION - HEALTHIER MATERIAL RECOMMENDATIONS

- Expanded cork board is top ranked
- Prefer fiber glass and cellulose insulation
- Avoid products with formaldehyde-based binders
- If board insulation is required, prefer rigid mineral wool insulation
- Avoid foam insulation, whether board or spray-applied
- Use mechanical installation methods

In Summary

Thank you! Any Questions?

Lauren Hildebrand Ihildebrand@swinter.com

Elizabeth Garland elizabeth.garland@mssm.edu

Bill Walsh bwalsh@healthybuilding.net

