IFI品 | SCALING HEAT IFEE | PUMP RETROFITS

Sean Brennan Associate Director, Research

urbangreencouncil.org @UrbanGreen

AGENDA

- Overview of Advancing Electrification research
- Technical challenges to electrification
- Heat pump business case and owner's perspective
- Q&A

NYC'S ELECTRIC PAST

Electrification of light

 Turn of 20th century – Edison, Tesla and Westinghouse

Science seldom proceeds in the straight-forward logical manner imagined by outsiders.

- James Watson

NYC'S ELECTRIC FUTURE

Roadmap to Zero Carbon NYC

URBAN GREEN COUNCIL

Heat pump potential

- Almost two-thirds of building emissions come from fossil fuel combustion
- Similar pattern between NYC and NYS
- Electrification can cut carbon emissions while improving air quality

Multifamily potential

- Demystifying Steam update coming October 2019
- Over 46,000 steam heated small and medium buildings¹
- Citywide, 1.8B SF of multifamily area uses steam heat

5,377 / 6,059

5,300 / 7,121

Predicted Small and Medium Multifamily¹ Steam Heated Properties by Borough

340 / 569

Manhattan

Brooklyn

Bronx

Queens

Staten Island

17,703 / 18,504 Small and medium properties 16,832 / 21,020

NOTE1: Buildings larger than 5,000 SF, smaller than 50,000 SF

URBAN GREEN COUNCIL

Medium multifamily projects

- Harlem (The Levy Partnership, JOE NYC)
 - Construction to start in 2020
- Bronx (Bright Power, Vomar)
 - Design complete, construction start 2019 - DHW served by heat pumps
- Brooklyn (CB, RiseBoro)
 - Casa Pasiva converts 143 units in Bushwick from steam to ASHPs

Large Multifamily projects

Residential larger than 25,000 SF:

40% of NYC building area

30% of NYC building emissions

NYC Building Emissions by Category One, Two and Low-Rise Large Multifamily Apartments Large Commercial Medium and Small **City Buildings** Commercial

NOTE1: Buildings larger than 25,000 SF URBAN GREEN COUNCIL

TECHNICAL CHALLENGES

Overview

- Technological uncertainty
- Existing electrical capacity
- Equipment placement
- Envelope improvements
- Refrigerant piping and selection

SYSTEM SELECTION

Central (VRF)

- Less roof space required
- Larger refrigerant runs and volumes
- Easier to connect additional electricity
- Difficult to meter

Unitary (mini-split)

- More space required, but smaller units
- Smaller, isolated refrigerant runs
- Some apartments will need electrical upgrade
- Tenant pays for heat through electricity
- Tendency to oversize based on product availability (2 tons is too big)

TECHNICAL CHALLENGES

Electrical capacity

- Issues for buildings and the grid
- Gathering data from utility customers with smart meters to understand demand and headroom
- Electrical upgrades could double retrofit cost

TECHNICAL CHALLENGES

Envelope Improvements

- Trade-off between investing in better envelope and HVAC equipment
- Heating load and heat pump capacity move in opposite directions
- Low-cost improvements like air-sealing should be planned and modeled

FINANCIAL CHALLENGES

Overview

- Capital costs
- Operating costs and gas cost
- Co-benefits
- Tenant relationship and rents

FINANCIAL CHALLENGES

Overview

- Heating using gas will still be cheaper even with huge increases in efficiency
- Hot water better business case given summer load
- Natural gas prices continue to fall, but ConEd has introduced 'Rider Z'

 Average Energy Cost

 USD / MMBtu (2005 - 2015)

 \$60

 \$40

 \$40

 \$20

 \$0

 Natural gas

 Electricity

CARBON SAVINGS

Refrigerants

- Fourth Generation refrigerants
- Common assumption is 10% leakage annually and 170% over lifetime of unit.¹
- Low GWP refrigerants in more efficient equipment

NOTE1: Gallagher et al. (2014), and Intergovernmental Panel on Climate Change - IPCC (2006)

CARBON SAVINGS

Natural gas

- US EPA estimates fugitive gas emissions at 1.4%, but 2018 study found 2.3% - 60% higher!¹
- EPA considering rolling back methane monitoring rules and exempting old well-sites
- Coal to gas carbon savings wiped out over 20 year period

NOTE1: Assessment of methane emissions from the U.S. oil and gas supply chain - Alvarez et al July 2018.

Greenhouse gas emissions by type, in metric tons of carbon dioxide equivalent

Source: Environmental Protection Agency WSJ graph design

UFBIN | THANK SPEEN | YOU

() @UrbanGreen

-

urbangreencouncil.org

Designing VRF Retrofits for Multifamily Buildings

David Goldstein, PE September 26, 2019

Distributed vs Central Condensing Units

Distributed Condensing Units

Mounting Options:

- Exterior wall mounting
- Installation on balconies
- Wall opening similar to PTAC

Advantages:

- Less disruptive piping distribution
 - No routing through corridors or risers
- Less overall piping means less refrigerant
 - Simple ASHRAE Standard 15 compliance
- Not restrained by pipe length limitations
 Max vertical pipe run is typically 150-200 ft
- Does not occupy roof space
- Simpler power distribution
 - Existing capacity may be adequate
- No additional submetering required
- More flexibility with tenants
 - Apartment can be retrofit as they become available

Central Condensing Units

Pipe Routing Options:

- Distributed risers within the apartments
- Central riser with corridor distribution

Advantages:

- Little or no façade impact
- Less installation work required within each apartment
 - Only refrigerant lines and wall-mounted unit
- Eliminates regular maintenance within each apartment
 - Regular filter cleaning can be done by tenant
- Easier to access the condensing units
- Easier condensate drainage from defrost

Refrigerant Safety ASHRAE Standard 15 & 34

- Current VRF systems use R-410A which is a safety group A1 refrigerant:
 - low toxicity and low flammability
 - Hazard is caused by displacement of oxygen
- ASHRAE Standard 34 defines refrigerant concentration limits (RCL) to ensure occupant safety
 - Also refer to local codes

Refrigerant Safety ASHRAE Standard 15 & 34

• Example

- -150 sq ft bedroom with 8 ft ceiling height = 1200 cubic ft
- Refrigerant concentration limit (RCL) = 26 lbs / 1000 cubic feet
- Maximum system refrigerant charge for this apartment is 31.2 lbs
- Preliminary estimate of 5 lbs of refrigerant per ton
 - Verify actual charge after system design is complete
- Maximum system capacity of 6 tons
- Strategies to comply with refrigeration volume limits:
 - Split condensing units into smaller capacities
 - Reduce piping lengths
 - Reduce the system capacity by improving envelope
 - Connect smaller rooms with door undercuts or transfer grilles

Thank you!

77 Water Street New York, NY 10005 R

david.goldstein@arup.com

Ca

+1 212 896 3000

Heat Pump Retrofits: the owner's perspective

Kelly Dougherty

What Does a Co-op/ Condo Board Consider?

Approve

- Clarity
 - What is VRF
 - Installation Cost
 - Utility Cost/Savings
 - Operational Costs/Savings
 - Tenant Disruption
 - \circ ~ Process Changes: Billing etc.
 - Timeline: When to Act
 - Benefits of Electrification
 - $\circ \quad \ \ {\rm Success \ Stories}$
- Incentives
- Connection to Local Laws

Disfavor

- Conflicting Information
 - Engineering Study vs. Contractor
 - Complicated Information
- Disruption to Tenants
- Increased Cost to Operate
- Complicated Billing Systems/added expense
- Refrigerant Health Risks
- More Expensive Option Than "for-like" replacement

Board members have an important responsibility to their fellow building owners. Board members must understand and agree with the benefits of converting.

Queens Co-Op I – Feasibility Report Costs

Option 1 – Replace Boiler		Option 2 – New VRF System		
Boiler Demo	\$50,000	Boiler Demo	\$50,000	
New Boiler	\$165,000	VRF	\$1,540,000	
Chimney Liner	\$65,000			
Boiler Room Code Upgrade	\$35,0000			
Distribution	\$95,000			
		New DHW	\$80,000	
Design/Soft Cost	\$30,000	Design/Soft Cost	\$80,000	
Contingency	\$55,000	Contingency	\$250,000	
Total	\$495,000	Total	\$2,000,000	

Queens Co-Op I – Operating Cost

VRF System Heating Energy Summary						
Existing Steam Boiler	Weather-Normalized Annual Heating Energy Consumption		Annual Heating Energy Cost	Energy Cost Rate (\$/MMBTU)		
	69.600 therms	7.000 MMBTU	\$68,900	\$9.90 (nat. gas)		
VRF System	514,000 kWh	1.800 MMBTU	\$97,700	\$55.69 (elec)		
VRF Savings		5,200 MMBTU	-\$28,800			

Queens Co-Op I: **DECISION**

Option 1 – Replace Boiler				
Boiler Demo	\$50,000			
New Boiler	\$165,000			
Chimney Liner	\$65,000			
Boiler Room Code Upgrade	\$35,0000			
Distribution	\$95,000			
Design/Soft Cost	\$30,000			
Contingency	\$55,000			
Total	\$495,000			

- 1. VRF was too expensive for shareholders
- 2. Board couldn't visit a retrofitted multifamily building in NY
- 3. The added cost to operate the units was difficult to explain to shareholders
- 4. Sponsor did not agree with VRF
- 5. Disruption to shareholders was too great
- 6. Providing/managing AC in the units is not in the buildings bylaws and was not an added responsibility the board wanted to take on.
- Façade repairs for PTAC sleeves was not included in the budget.

Queens Co-op II – Feasibility Report Estimates

For like replacement (w/o chiller): \$2,621,440

Vs.

VRF Replacement: **\$2,565,400**

Project Cost Estimate						
ltem	Quantity	Unit	Unit Cost	Totals		
Replace Steam Boiler	1	ea	\$ 300,000	\$ 300,000		
Line Chimney	130	ft	\$ 1,000	\$ 130,000		
Replace Pumps	3	ea	\$ 50,000	\$ 150,000		
Replace Cooling Tower	1	ea	\$ 150,000	\$ 150,000		
Replace C/HW and Condensate Main Piping	1200	ft -	\$ 100	\$ 120,000		
Replace C/HW and Condensate Risers	11	ea	\$ 50,000	\$ 550,000		
Replace Fan Coil Units	216	ea	\$ 3,000	\$ 648,000		
Subtotal				\$ 2,048,000		
Contingency Fee	20%			\$ 409,600		
Design Fee	8%			\$ 163,840		
Total:				\$ 2.621.440		
Project C	ost Estimate					
ltem	Quantity	Unit	Unit Cost	Totals		
Demolish Steam Boiler & Piping	1	ea	\$ 50,000	\$ 50,000		
Demolish Chiller & Pumps	1	ea	\$ 50,000	\$ 50,000		
Demolish Cooling Tower	1	ea	\$ 50,000	\$ 50,000		
VRF Condenser Units	22	ea	\$ 25,000	\$ 550,000		
VRF Indoor Units	166	ea	\$ 7,500	\$ 1,245,000		
DHW Water Heater	1	ea	\$ 75,000	\$ 75,000		
Line Chimney	130	ft	\$ 750	\$ 97,500		
Subtotal				\$ 2,020,000		
Contingency Fee	20%			\$ 404,000		
Design Fee	7%			\$ 141,400		
Total:	1			\$ 2,565,400		

Queens Co-Op II: **DECISION**

ASHP system throughout the building
 Decentralize cooling system w/ window PTAC
 How? requiring shareholders to purchase and install window units.
 Unexpected Benefit: behavioral impact, shareholders now have complete cooling control and are paying for their individual use.

A couple of things to note:

- 1. Will apartment values drop without central air?
- 2. Not every room/window can accommodate a window A/C
- 3. Without running the cooling plant the building is saving 119,200 annually* *Unit owner additional spend (electric) for window A/C has not been included in this figure.

Queens Co-Op II – EUI Reduction

Considerations to Include in Full Analysis

On-Going Operational Cost Items

- Steam Systems: Boiler Cleaning, Tuning, Chemical Treatment, Tube Replacements, Steam Trap Replacements, etc.
- Hydronic Systems: Water Treatments, LL77 Compliance, Bi-Annual Unit Maintenance, Cooling Tower Maintenance/Repairs, Chiller Maintenance/Repairs, etc.
- **ASHP:** Annual Maintenance/Repairs

Other Useful Information

- Useful life comparison between systems
- Provide a reasonable increased value analysis from a realtor for decentralized heating and cooling apartments
- Include the possible LL97 GHG fines that may be avoided by converting to electric heating and cooling

Combining Measures in Feasibility Study

- Potential increase of efficacy of projects due to combining measures
 - Whole building weatherization
 - Windows
 - Facade Repairs/ Insulation
 - Low hanging fruit
 - Lighting
 - \circ Controls
 - Pipe Insulation
 - $\circ \quad \text{Retro-commissioning} \quad$

Non-energy related benefits

- Tenant Comfort & Control
- Behavioral Energy Reduction Leading to Higher LL133 Scores/Grades
- GHG emissions + Potential Fines
- Apartment value
- Operational costs

Conclusions

- 1. Consistency needed between Engineers & Contractors
- 2. ASHP may not be a <u>financial fit</u> for every type of building or system
- 3. Inclusion of non-energy related benefits is very important
- 4. Inclusion of all cost expenditures including PTAC, Fan Coil, WSHP, etc.

Kelly Dougherty Director, Energy Management FirstService Energy Kelly.Dougherty@firstserviceenergy.com