NYC Local Laws and Pathways to Municipal Electrification

Agenda

- Intro to DCAS Energy Management (DEM)
- NYC GHG Emissions Goals and the Need for Building Electrification
- Local Laws Governing Municipal Capital Projects
- Drivers of Full HVAC Electrification in Municipal Capital Projects
- Drivers of Incremental Electrification in Smaller Municipal Projects
- Potential Market Opportunities
- DEM Is Hiring!

Our City's Ambitious Reduction Goals

citywide 80X50

GOVERNMENT OPERATIONS 50X30

Action on Climate Change

ALIGNING NEW YORK CITY WITH THE PARIS CLIMATE AGREEMENT

Intensifying Our Commitments

- Frontload emissions reductions efforts
- Cap energy use intensity for large buildings
- Achieve 20% deeper cuts in City building's energy use by 2025
- Launch deep energy retrofits
- Procure 100% renewable electricity

What is the Department of Citywide Administrative Services?

DCAS serves as the back office for all New York City municipal agencies

Services

Who is DCAS Energy Management?

SUPPLY

- Manage the City's \$700 million Heat, Light, and Power budget
- Install clean energy projects
- Leading City towards long-term procurement of 100% renewable electricity

DEMAND

- Implement energy efficiency retrofit projects in City buildings
- Expanding O&M best practices across the City's portfolio
- Train City employees to change behaviors

Our Energy Services for Agency Partners

Technical Expertise

Strategic Planning

Contract Resources

A Diverse Portfolio of Municipal Buildings

4,600+ Buildings

DCAS

A Diverse Portfolio of Municipal Buildings

4,600+ Buildings Decarton Zation 200 sq. ft. 1M sq. ft.

Successes to date

Cut Total Emissions and Energy Use

 GHG emissions in City buildings down 26% since FY06

Flattened Utility Costs

 FY17 HLP Budget forecasted 3.4% below 5-year average, despite 29% growth in budget

Scaled Up Investments

 Completed \$500 million of energy retrofits in 1,000+ City buildings since FY08

Clean Energy Development

 Increased solar generation on City buildings 10-fold since FY14

Agency Capacity

 $(:\Delta S$

 200% increase in agency energy professionals since FY09

Local Laws Governing NYC Municipal Capital Projects

Local Laws Governing NYC Capital Projects

An incomplete list:

- LL86-2005 LEED Silver
- LL66-2014 80x50 GHG Target for Entire City
- LL06-2016 Geothermal Feasibility
- LL31-2016 Low Source EUI Targets
- LL32-2016 LEED Gold
- LL94 -2019 Solar or Green Roofs
- LL97-2019 40x25 and 50x30 GHG Targets for Government Ops

Local Laws Governing NYC Capital Projects

An incomplete list:

- LL86-2005 LEED Silver
- L119-2005 Environmentally preferable purchasing
- LL87-2009 Implement ECMs with payback \leq 7 years
- LL107-2013 Minimum 5% biofuel
- LL66-2014 80x50 GHG Target for Entire City
- LL06-2016 Geothermal Feasibility
- LL24-2016 Solar PV feasibility & reporting
- LL31-2016 Low Source EUI Targets
- LL32-2016 LEED Gold
- LL94 -2019 Solar or Green Roofs
- LL97-2019 40x25 and 50x30 GHG Targets for Government Ops

Local Laws Governing NYC Capital Projects

An incomplete list:

- LL86-2005 LEED Silver
- L119-2005 Environmentally preferable purchasing
- LL87-2009 Implement ECMs with payback ≤ 7 years
- LL107-2013 Minimum 5% biofuel
- LL66-2014 80x50 GHG Target for Entire City
- LL06-2016 Geothermal Feasibility
- LL24-2016 Solar PV Feasibility & Reporting
- LL31-2016 Low Source EUI Targets
- LL32-2016 LEED Gold
- LL45-2018 Real-time Energy Monitoring
- LL107-2018 100% Green Power by 2050
- LL94-2019 Solar or Green Roofs
- LL97-2019 40x25 and 50x30 GHG Targets for Government Ops
- LL147-2019 Modifies LL97

LL06 of 2016: GSHP feasibility

Requires feasibility study and, if lowest net present value, installation of ground-source (geothermal) heat pump systems for new or retrofit HVAC projects in NYC-owned buildings

Screenshot from DDC Geothermal Webtool

LL06 of 2016: GSHP Feasibility

Requires feasibility study and, if lowest net present value, installation of ground-source (geothermal) heat pump systems for new or retrofit HVAC projects in NYC-owned buildings

Social Cost of Carbon (\$ / MTCO2e)				
2017	\$128			
2018	\$132			
2019	\$136			
2020	\$140			
2021	\$142			
2022+	TBD			

LL06 of 2016: GSHP Feasibility

Requires feasibility study and, if lowest net present value, installation of ground-source (geothermal) heat pump systems for new or retrofit HVAC projects in NYC-owned buildings

Will it drive electrification?	BPL Arlington Library Schematic Design Estimate	Split System	Split w/ VRF Heat Recovery	GSHP
Not likely.Capital cost still high (drilling)	Capital Cost	\$1,190,000	\$1,309,000	\$1,915,900
	Annual O&M Cost	\$3,000	\$4,000	\$2,500
	First Year Energy Cost	\$29,000	\$27,000	\$19,000
	Social Cost of Carbon			-\$820
SCC too low	Net Present Value	\$1,942,000	\$2,091,800	\$2,377,000
	20-year study period. Energy cost inflation rate 3%. O&M inflation rate 6%. Discount rate 6%.			

LL32 of 2016: LEED v4 Gold

Requires NYC-funded new construction and substantial construction to achieve LEED version 4 Gold certification, plus 20-30% energy cost reduction relative to NYS ECCC (ASHRAE 90.1-2013) baseline

NYC Parks Shirley A. Chisholm Community Center 1100 Architects NYPD Operations Facility at 100 Old Slip (former Police Museum)

LL32 of 2016: LEED v4 Gold

Requires NYC-funded new construction and substantial construction to achieve LEED version 4 Gold certification, plus 20-30% energy cost reduction relative to NYS ECCC (ASHRAE 90.1-2013) baseline

Will it drive electrification?

Not likely.

 LEED and LL32 measure energy cost savings, not energy or GHC savings

ENERGY & ATMOSPHERE REQUIRED Prerea Fundamental commissioning and verification REQUIRED Prerea Minimum energy performance Prereq Building-level energy metering REQUIRED REQUIRED Fundamental refrigerant management Prereq Credit Enhanced commissioning 6 Credit Optimize energy performance 18 Credit Advanced energy metering 1 Credit Demand response 2 3 Credit Renewable energy production Enhanced refrigerant management 1 Credit Credit Green power and carbon offsets 2

LEED v4 Energy & Atmosphere Credits

LL31 of 2016: Low Source EUI

Requires NYC-funded and -owned new construction and substantial reconstruction to be designed to have a low source EUI target:

- 50% lower than current median EUI for typology, per LL84, or
- 50% lower than ASHRAE 90.1-2013 baseline building, or
- 32/42 (new/existing) kBtu/sf/yr only target after 1/1/2030

Case Studies	LL84 Target	ASHRAE Target	2030 Target
Westchester Square Library	103.2	60.2	38.0 (new)
Woodstock Library	Libraries	46.1	42.0 (exg)
Bergen Building	91.5	37.6	42.0 (exg)
Glenmore Building	Offices	38.7	42.0 (exg)
Spring Street Garage	111.4	45.8	38.0 (new)
Queens 7 Garage	Repair Garages	49.3	42.0 (exg)

LL31 of 2016: Low Source EUI

Requires NYC-funded and -owned new construction and substantial reconstruction to be designed to have a low source EUI target (50% LL84 median, 50% ASHRAE baseline, or 38/42 kBtu/sf/yr)

Will it drive electrification?

Maybe.

- Source EUI targets can favor gas (source:site ratio of 1.05) over electricity (ratio of 2.80)
- Will shift with greener grid

LL92/94 of 2019: Solar or Green Roofs

Requires new roofs on NYC-owned buildings to be covered by:

- Solar PV (if more than 4kW can be accommodated) or
- Green roof systems (if slope is less than or equal to 2:12)

NYC Parks 5-Boro Admin Building

Queens Public Library Kew Gardens Hills Branch

LL92/94 of 2019: Solar or Green Roofs

Requires new roofs on NYC-owned buildings to be covered by:

- Solar PV (if more than 4kW can be accommodated) or
- Green roof systems (if slope is less than or equal to 2:12)

Will it drive electrification?

Maybe (indirectly).

- Solar can "offset" electricity use, but not enough to meet most buildings' HVAC loads
- Also requires battery storage

100 MW on NYC Municipal Buildings by 2025

LL97 of 2019: 40x25 and 50x30

Requires NYC government operations to reduce GHG emissions 40% by 2025, and 50% by 2030, relative to FY2006 levels

BuildingsStreetlights and Traffic SignalsWater Supply

Fugitive and Process Emissions

Transportation

Wastewater Treatment

Solid Waste Facilities

LL97 of 2019: 40x25 and 50x30

Requires NYC government operations to reduce GHG emissions 40% by 2025, and 50% by 2030, relative to FY2006 levels

Will it drive electrification?

Eventually.

- Depends on greener grid
- GHG conversion factors used for compliance of city-owned buildings will update annually

Drivers of Full HVAC Electrification in NYC Municipal Capital Projects

NYPL Westchester Square Branch Library

Electrification: Air-Source VRF for Supply Air Conditioning

Snohetta / Altieri Sebor Wieber Consulting Engineers / Atelier Ten

NYPL Westchester Square Branch Library

Enabling Conditions: Backup Heating

Conceptual Diagram of HVAC System

NYPL Westchester Square Branch Library

Enabling Conditions: Backup Heating + Envelope Upgrade

Upgraded Envelope Performance

BPL Arlington Branch Library

Electrification: 100% Air-Source VRF for Heating/Cooling (proposed)

East Branch Library c. 1914

Arlington Library c. 2009

BPL Arlington Branch Library

Enabling Conditions: Landmark

East Branch Library c. 1914

Conceptual HVAC Bulkhead at Former Skylight

BPL Arlington Branch Library

Enabling Conditions: Landmark + Space Constraints

Downsize Ductwork

Convert Boiler Pit to Community Room

BPL Arlington Branch Library

 $\lambda \Delta S$

Enabling Conditions: Landmark + Space Constraints + Envelope Upgrade

BPL Arlington Branch Library

Enabling Conditions: Landmark + Space Constraints + Envelope Upgrade

Built-In Bookshelves Preclude Wall Insulation

Case Studies: Heating Concerns

Other solutions to lingering concerns about meeting heating loads on design days:

- Envelope commissioning and airtightness testing
- Locate heat pumps in rooms with ambient waste heat
- Maximize ERV efficiency to preheat fresh air
- Add electric resistance coils to ducts (not preferred!)

Compressor Room at DSNY District 4/4A/7 Garage

Case Study 3: Geothermal Feasibility

Staten Island Museum at Snug Harbor Cultural Center

Electrification: Ground Source Heat Pump System for Heating/Cooling

Gluckman Tang Architects / Arup / P.W. Grosser Consulting

Case Study 3: Geothermal Feasibility

Staten Island Museum at Snug Harbor Cultural Center

Enabling Conditions: Landmark Exterior

Case Study 3: Geothermal Feasibility

Staten Island Museum at Snug Harbor Cultural Center Enabling Conditions: Landmark Exterior + Landscape

Geothermal Field Installation

Post Installation

Case Study 4: Geothermal Feasibility

Weeksville Heritage Center

Electrification: Ground Source Heat Pump System for Heating/Cooling

Caples Jefferson Architects / Loring Consulting Engineers / P.W. Grosser Consulting

Case Study 4: Geothermal Feasibility

Weeksville Heritage Center

Enabling Conditions: Historical Landscape

Remnant of Hunterfly Road

Site Hydrology Concept

Case Study 4: Geothermal Feasibility

Weeksville Heritage Center

Enabling Conditions: Historical Landscape + Incentives Eligibility

Case Studies: Geothermal Feasibility

Other conditions favoring geothermal in NYC municipal buildings (aside from hydrogeography):

- Limited access to gas
 infrastructure
- Similar-sized annual heating and cooling loads
- Sufficient site area accessible to drilling rig
- Pile foundations

Geothermal Pile Frame

Case Study: New NYPD Bomb Squad Facility

Electrification: 100% Air-Source VRF for Heating/Cooling

Rice + Lipka Architects / Plus Group Consulting Engineers

Case Study: NYPD Bomb Squad Facility

Enabling Conditions: No Gas Infrastructure

NYPD Tactical Campus, Rodman's Neck

Case Study: NYPD Bomb Squad Facility

Enabling Conditions: No Gas Infrastructure + Space Constraints

Option 1: VRF

Option 2: Fuel Oil Boiler

DCAS

DOHMH East Harlem Health Center

Electrification: 100% Air-Source VRF for Heating/Cooling (proposed)

Proposed Lobby Renovation

DOHMH East Harlem Health Center

Enabling Conditions: All-Electric Teaching Kitchen

Teaching Kitchen Concept

Neighborhood Health Action Center Cooking Class

DOHMH East Harlem Health Center

Enabling Conditions: All-Electric Teaching Kitchen + Emergency Power

Smoothie Bike and Charging Station

Other solutions to concerns about maintaining heat during disruption in electrical service:

- Size emergency generators to power heat trace
- Size emergency generators to maintain minimal interior temperature (easy for geothermal)
- Battery or thermal storage

Proposed Li-ion Battery at Westchester Square Library

Case Study 7: Refrigerant Management

DCAS Staten Island Campus

Electrification: 100% Water-Source VRF for Heating/Cooling (proposed)

Costantino Judicial Center

> Staten Island Supreme Courthouse

> Staten Island Borough Hall

DCAS

Case Study 7: Refrigerant Management

DCAS Staten Island Campus

Enabling Conditions: Landmark

Judicial Center 1961 Supreme Courthouse 1913-1919

Borough Hall 1904-1906

Case Study 7: Refrigerant Management

DCAS Staten Island Campus

Enabling Conditions: Landmark Served by New District System Housed in Modern Neighbor

- New cooling tower, chillers, condensing boilers located in Judicial Center
- HHW / CHW runs beneath street to water-source VRF units at Borough Hall and Supreme Courthouse

Case Studies: Refrigerant Management

Other solutions to lingering concerns about refrigerant leakage:

- Circulate HHW / CHW instead
 of refrigerant
- Zone refrigerant distribution to allow for targeted shutdown
- Better maintenance contracts
- Double-pipe (not preferred!)

Compressor Room at DSNY District 4/4A/7 Garage

Summary of Capital Scale Projects

- Currently, electrification of NYC municipal buildings is opportunistic
- Moving toward a more prescriptive approach for some typologies as we implement solutions to common concerns
- Ultimately, some typologies will be 100% electrified, while the majority of the portfolio will likely see partial electrification
- Much of the work will have to be incremental as buildings must remain in service
- Eager to demonstrate innovative solutions

Drivers of Incremental Electrification in Smaller Municipal Projects

Expense Projects and 1:1 Retrofits

- Capital isn't all we do!
 - Expense funded retrofits are a large portion of our VRF portfolio
 - What is Expense vs. Capital?
- Case studies
 - Brooklyn Public Library
 - DCAS Facilities Management
- Focus on small scale building portfolios and equipment at end of life
- Installation with in-house teams
 - Train the trainer
 - Relationship with manufacturer
- Focus on partial building electrification allows us a later opportunity to downsize central systems with capital dollars

Expense Projects and 1:1 Retrofits

- Capital isn't all we do!
 - Expense funded retrofits are a large portion of our VRF portfolio
 - What is Expense vs. Capital?
- Case studies
 - Brooklyn Public Library
 - DCAS Facilities Management → ~250 tons in 25 buildings
- Focus on small scale building portfolios and equipment at end of life
- Installation with in-house teams
 - Train the trainer
 - Relationship with manufacturer
- Focus on partial building electrification allows us a later opportunity to downsize central systems with capital dollars

Expense Projects and 1:1 Retrofits

- Connections to the marketplace are difficult due to contracting, however, procurement is just the <u>first</u> hurdle...
 - Workforce Development → in-house and contractor availability
 - Long term maintenance questions + refrigerant uncertainty
 - Products aren't new, but change is slow

 $C\Delta S$

• What do we have and where do we have it? Fully noninvasive retrofits aren't in the market as of yet

Potential Market Opportunities

New Technology Demonstrations + IDEA

Facilities and Technologies

Innovation across the City

RFI to Manufacturers

Nascent Technology

Challenge to the Market

IDEA Program

Innovation across the City

RFI to Manufacturers

Nascent Technology

Challenge to the Market

IDEA Program

Innovation across the City

Rebecca Isacowitz

Director of Efficient Operations & Maintenance <u>risacowitz@dcas.nyc.gov</u> linkedin.com/in/rebeccaisacowitz

Michael Balagur Director of Capital Project Development <u>mbalagur@dcas.nyc.gov</u>

linkedin.com/in/mbalagur

IS HIRING!