Moving the ‘Masses’ toward Taller Timber Construction: Codes, Design Steps & Environmental Impacts

August 13, 2020 · 9:15-10:45am

Presenters:

Ricky McLain (WoodWorks), Alexandra Davis (Thornton Tomasetti), & Matthew Tonello (Consigli Construction)
Learning Objectives

• **Understand** benefits and potential uses of mass timber for high performance buildings

• **Compare** the environmental impact of mass timber construction as opposed to traditional concrete or steel, and the principles of procurement to harvest this resource sustainably

• **Discuss** barriers to mass timber construction in the Northeast and the tactics to overcome them

• **Identify** key stakeholders, organizations, and commitments which others have taken on to encourage the development of sustainable mass timber applications in the Northeast region

Ricky McLain, PE, SE, Senior Technical Director – Tall Wood, WoodWorks – Wood Products Council

Photo: Kaiser+Path
Designing a wood building? Ask us anything.

WoodWorks
WOOD PRODUCTS COUNCIL

FREE PROJECT SUPPORT | EDUCATION | RESOURCES

woodworks.org | help@woodworks.org
WHAT IS MASS TIMBER?

Heavy Timber
Photo: Benjamin Benschneider

Mass Timber
Photo: John Stamets
GLULAM

CROSS-LAMINATED TIMBER (CLT)

NAIL-LAMINATED TIMBER (NLT)

Photos: APA

Photo: Think Wood

Photo: StructureCraft

Photo: LendLease

Photo: Ema Peter
Mass Timber Projects In Design and Constructed in the US (June 2020)

380+ Built
530+ In Design

Considering mass timber for a project? Ask us anything.

For free project support, contact:
help@woodworks.org
woodworks.org/project-assistance
MASSACHUSETTS REGIONAL AIRPORTS | VARIOUS LOCATIONS, MA

Image: Fennick McCredie Architecture
GLOBAL TALL WOOD CIRCA 2019
18-24 STORIES
TALL WOOD IN THE US CIRCA 2019

8 STORIES

Photos: Baumberger Studio/PATH Architecture/Marcus Kauffman | Architect: PATH Architecture
TALL WOOD IN THE U.S.
Current Prescriptive Code Limit - 6 stories (B occupancy) or 85 feet

Over 6 Stories - Alternate Means and Methods Request (AMMR) through performance based design

Based on the 1910 Heights and Areas Act
3 YEAR CODE CYCLE

Source: ICC
Interest in tall wood projects in the US was rapidly increasing. Some building officials were reluctant to approve proposed plans, primarily due to lack of code direction and precedent.
In December 2015, the ICC Board established the ICC Ad Hoc Committee on Tall Wood Buildings. Objectives:
1. Explore the building science of tall wood buildings
2. Investigate the feasibility, and
3. Take action on developing code changes for tall wood buildings.
TALL WOOD APPROVED!

Unofficial results posted Dec 19, 2018
Final votes ratified Jan 31, 2019

AWC: Tall Mass Timber code changes get final approval

Dec 19, 2018

LEESBURG, VA. – The International Code Council (ICC) has released the unofficial voting results on code change proposals considered in 2018, including passage of the entire package of 14 tall mass timber code change proposals. The proposals create three new types of construction (Types IV-A, IV-B and IV-C), which set fire safety requirements, and allowable heights, areas and number of stories for tall mass timber buildings. Official results are expected to be announced during the first quarter of 2019. The new provisions will be included in the 2021 International Building Code (IBC).

“Mass timber has been capturing the imagination of architects and developers, and the ICC result means they can now turn sketches into reality. ICC’s rigorous study, testing and voting process now recognizes a proven, low carbon alternative to traditional tall building materials used in the building...
Since its debut, IBC has contained 9 construction type options.

5 Main Types (I, II, III, IV, V) with all but IV having sub-types A and B.

<table>
<thead>
<tr>
<th>TYPE I</th>
<th>TYPE II</th>
<th>TYPE III</th>
<th>TYPE IV</th>
<th>TYPE V</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>HT</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

Credit: ICC
2021 IBC Introduces 3 new tall wood construction types: IV-A, IV-B, IV-C
Previous type IV renamed type IV-HT

<table>
<thead>
<tr>
<th>BUILDING ELEMENT</th>
<th>TYPE I</th>
<th>TYPE II</th>
<th>TYPE III</th>
<th>TYPE IV</th>
<th>TYPE V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
New Building Types

Credit: Susan Jones, atelierjones
Type IV-C

Credit: Susan Jones, atelierjones

Photos: Baumberger Studio/PATH
Architecture/Marcus Kauffman
Type IV-C Protection vs. Exposed

All Mass Timber surfaces may be exposed

Exceptions: Shafts, concealed spaces, outside face of exterior walls

Credit: Susan Jones, atelierjones
Type IV-C Height and Area Limits

<table>
<thead>
<tr>
<th>Occupancy</th>
<th># of Stories</th>
<th>Height</th>
<th>Area per Story</th>
<th>Building Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2</td>
<td>6</td>
<td>85 ft</td>
<td>56,250 SF</td>
<td>168,750 SF</td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>85 ft</td>
<td>135,000 SF</td>
<td>405,000 SF</td>
</tr>
<tr>
<td>M</td>
<td>6</td>
<td>85 ft</td>
<td>76,875 SF</td>
<td>230,625 SF</td>
</tr>
<tr>
<td>R-2</td>
<td>8</td>
<td>85 ft</td>
<td>76,875 SF</td>
<td>230,625 SF</td>
</tr>
</tbody>
</table>

Areas exclude potential frontage increase

In most cases, Type IV-C height allowances = Type IV-HT height allowances, but add’l stories permitted due to enhanced FRR

Type IV-C area = 1.25 * Type IV-HT area
Type IV-B

Credit: Susan Jones, atelierjones

Credit: LEVER Architecture
Type IV-B Protection vs. Exposed

NC protection on all surfaces of Mass Timber except limited exposed areas

~20% of Ceiling or ~40% of Wall can be exposed, see code for requirements
Type IV-B Height and Area Limits

<table>
<thead>
<tr>
<th>Occupancy</th>
<th># of Stories</th>
<th>Height</th>
<th>Area per Story</th>
<th>Building Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2</td>
<td>12</td>
<td>180 ft</td>
<td>90,000 SF</td>
<td>270,000 SF</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>180 ft</td>
<td>216,000 SF</td>
<td>648,000 SF</td>
</tr>
<tr>
<td>M</td>
<td>8</td>
<td>180 ft</td>
<td>123,000 SF</td>
<td>369,000 SF</td>
</tr>
<tr>
<td>R-2</td>
<td>12</td>
<td>180 ft</td>
<td>123,000 SF</td>
<td>369,000 SF</td>
</tr>
</tbody>
</table>

Areas exclude potential frontage increase

In most cases, Type IV-B height & story allowances = Type I-B height & story allowances

Type IV-B area = 2 * Type IV-HT area
Type IV-A

Credit: Susan Jones, atelierjones

Photos: Structurlam, naturally:wood, Fast + Epp, Urban One
100% NC protection on all surfaces of Mass Timber

Credit: Susan Jones, atelierjones
Type IV-A Height and Area Limits

Occupancy

<table>
<thead>
<tr>
<th>Occupancy</th>
<th># of Stories</th>
<th>Height</th>
<th>Area per Story</th>
<th>Building Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2</td>
<td>18</td>
<td>270 ft</td>
<td>135,000 SF</td>
<td>405,000 SF</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>270 ft</td>
<td>324,000 SF</td>
<td>972,000 SF</td>
</tr>
<tr>
<td>M</td>
<td>12</td>
<td>270 ft</td>
<td>184,500 SF</td>
<td>553,500 SF</td>
</tr>
<tr>
<td>R-2</td>
<td>18</td>
<td>270 ft</td>
<td>184,500 SF</td>
<td>553,500 SF</td>
</tr>
</tbody>
</table>

Areas exclude potential frontage increase

In most cases, Type IV-A height & story allowances = 1.5 * Type I-B height & story allowances

Type IV-A area = 3 * Type IV-HT area
Tall Wood Fire Resistance Ratings (FRR)

FRR Requirements for Tall Mass Timber Structures (hours)

<table>
<thead>
<tr>
<th>Building Element</th>
<th>IV-A</th>
<th>IV-B</th>
<th>IV-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Frame</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Exterior Bearing Walls</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Interior Bearing Walls</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Roof Construction</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Primary Frame at Roof</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Floor Construction</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: 2021 IBC Table 601
Noncombustible Protection (NC)

Where timber is required to be protected, NC must contribute at least 2/3 FRR

<table>
<thead>
<tr>
<th>FRR of Building Element (hours)</th>
<th>Minimum from Noncombustible Protection (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>3 or more</td>
<td>120</td>
</tr>
</tbody>
</table>

Source: 2021 IBC Section 722.7
MT Fire Resistance Ratings (FRR)

IBC 722.7
The fire resistance rating of the mass timber elements shall consist of the fire resistance of the unprotected element (MT) added to the protection time of the noncombustible (NC) protection.
How do you determine FRR of MT?

2 Options:
1. Calculations in Accordance with IBC 722 → NDS Chapter 16
2. Tests in Accordance with ASTM E119
Type IV-B Fire Resistance Ratings (FRR)

Primary Frame (2-hr) + Floor Panel (2-hr)

- Minimum 1" noncombustible material
- Mass timber floor panel
- 40 minutes of MT FRR
- 2 layers 5/8" Type X gypsum
- Glulam beam (primary structural frame)
- 40 minutes of MT FRR
- Two layers 5/8" Type X gypsum
Type IV-B Fire Resistance Ratings (FRR)

Primary Frame (2-hr) + Floor Panel Example (2-hr)

Minimum 1" noncombustible material
Mass timber floor panel
2-hr of MT FRR; noncombustible material not required
Glulam beam (primary structural frame)
2-hr of MT FRR; noncombustible material not required
MT Fire Resistance Ratings (FRR)

Mass Timber Fire Design Resource

- Code compliance options for demonstrating FRR
- Updated as new tests are completed
- Free download at woodworks.org

Credit: WoodWorks
MT Fire Resistance Ratings (FRR)

Inventory of Fire Tested MT Assemblies

<table>
<thead>
<tr>
<th>CLT Panel</th>
<th>Manufacturer</th>
<th>CLT Grade or Major x Minor Grades</th>
<th>Ceiling Protection</th>
<th>Panel Connection in Test</th>
<th>Floor Topping</th>
<th>Lead Rating</th>
<th>Fire Resistance Achieved (Hours)</th>
<th>Source</th>
<th>Testing Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-ply CLT</td>
<td>Nordic</td>
<td>SPR 16.50 Fs 1.15 MES x SPR #6</td>
<td>None</td>
<td>Half-Lap</td>
<td>None</td>
<td>Reduced 35% Moment Capacity</td>
<td>1</td>
<td>NRC Fire Laboratory</td>
<td></td>
</tr>
<tr>
<td>3-ply CLT</td>
<td>Stroemlo</td>
<td>SPR 41.02 x SPR 41.02</td>
<td>Topside Spline</td>
<td>Half-Lap</td>
<td>None</td>
<td>Reduced 75% Moment Capacity</td>
<td>1</td>
<td>NRC Fire Laboratory</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Nordic</td>
<td>EI</td>
<td>Topside Spline</td>
<td>2 staggered layers of 1/2" cement boards</td>
<td>None</td>
<td>Loaded, See Manufacturer</td>
<td>2</td>
<td>NRC Fire Laboratory March 2016</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Nordic</td>
<td>EI</td>
<td>Topside Spline</td>
<td>2 staggered layers of 1/2" cement boards</td>
<td>None</td>
<td>Loaded, See Manufacturer</td>
<td>2</td>
<td>NRC Fire Laboratory Nov 2014</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Nordic</td>
<td>EI</td>
<td>Topside Spline</td>
<td>3/4 in proprietary gypsum over Mecum on metal stud</td>
<td>None</td>
<td>Reduced 50% Moment Capacity</td>
<td>2.5</td>
<td>UL</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Nordic</td>
<td>EI</td>
<td>Topside Spline</td>
<td>3/4 in proprietary gypsum over Mecum on metal stud</td>
<td>None</td>
<td>Reduced 50% Moment Capacity</td>
<td>2</td>
<td>UL</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Nordic</td>
<td>EI</td>
<td>Topside Spline</td>
<td>3/4 in proprietary gypsum over Mecum on metal stud</td>
<td>None</td>
<td>Reduced 50% Moment Capacity</td>
<td>2.5</td>
<td>UL</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Stroemlo</td>
<td>SPR 16.50 Fs 1.15 MES x SPR #6</td>
<td>None</td>
<td>Half-Lap & Topside Spline</td>
<td>3/4 gypsum</td>
<td>Loaded, See Manufacturer</td>
<td>2</td>
<td>SwRI (May 2016)</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Nordic</td>
<td>SPR 1500 F5 MES x SPR #6</td>
<td>None</td>
<td>Half-Lap</td>
<td>None</td>
<td>Unreduced 100% Moment Capacity</td>
<td>2</td>
<td>NRC Fire Laboratory</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Nordic</td>
<td>SPR 41.02 x SPR 41.02</td>
<td>None</td>
<td>Half-Lap</td>
<td>None</td>
<td>Unreduced 100% Moment Capacity</td>
<td>2.5</td>
<td>UL</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Smart Lane</td>
<td>ILV4</td>
<td>None</td>
<td>Half-Lap</td>
<td>None</td>
<td>Loaded, 1/2" plywood with 8d nails</td>
<td>12</td>
<td>Western Fire Center 10/26/2016</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Smart Lane</td>
<td>VI</td>
<td>None</td>
<td>Half-Lap</td>
<td>None</td>
<td>Loaded, 1/2" plywood with 8d nails</td>
<td>12</td>
<td>Western Fire Center 10/28/2016</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Smart Lane</td>
<td>VI</td>
<td>None</td>
<td>Half-Lap</td>
<td>None</td>
<td>Loaded, 1/2" plywood with 8d nails</td>
<td>12</td>
<td>Western Fire Center 11/01/2016</td>
<td></td>
</tr>
<tr>
<td>5-ply CLT</td>
<td>Stroemlo</td>
<td>CV/M0</td>
<td>Half-Lap & Topside Spline</td>
<td>3/4 gypsum</td>
<td>None</td>
<td>Reduced, See Manufacturer</td>
<td>1</td>
<td>SwRI (May 2016)</td>
<td></td>
</tr>
</tbody>
</table>

Credit: WoodWorks
Tall Wood Buildings in the 2021 IBC
Up to 18 Stories of Mass Timber

In January 2018, the International Code Council (ICC) approved a set of proposals to allow tall wood buildings as part of the 2021 International Building Code (IBC). Based on these proposals, the 2021 IBC will include three new construction types—Type IV-A, IV-B and IV-C—allowing the use of mass timber or non-combustible materials. These new types are based on the previous Heavy Timber construction type (renamed Type IV-HT) but with additional fire-resistance ratings and levels of required non-combustible protection. The code will include provisions for up to 18 stories of Type IV-A construction for Business and Residential Occupancies.

Based on information first published in the Structural Engineers Association of California (SEACO) 2018 Conference Proceedings, this paper summarizes the background to these proposals, technical research that supported their adoption, and resulting changes to the IBC and product-specific standards.

Background: ICC Tall Wood Building
Ad Hoc Committee

Over the past 10 years, there has been a growing interest in tall buildings constructed from mass timber materials (Breneman 2013, Timmera 2015). Around the world there

WoodWorks Tall Wood Design Resource
Demonstrating Fire-Resistance Ratings for Mass Timber Elements in Tall Wood Structures

Richard McCain, PE, SE • Senior Technical Director • Tall Wood, WoodWorks

Changes to the 2021 International Building Code (IBC) have created opportunities for wood buildings that are much larger and taller than prescriptively allowed in past versions of the code. Occupant safety, and the need to ensure fire performance in particular, was a fundamental consideration as the changes were developed and approved. The result is three new construction types—Type IV-A, IV-B, and IV-C—which are based on the previous Heavy Timber construction type (renamed Type IV-H), but with additional fire protection requirements.

One of the main ways to demonstrate that a building will meet the required level of passive fire protection, regardless of structural materials, is through hourly fire-resistance ratings (FRRs) of its elements and assemblies. The IBC defines an FRR as the period of time a building element, component, or assembly maintains the ability to confine a fire, continues to perform a given structural function, or both, as determined by the tests, or the methods based on tests, prescribed in Section 703.

FRRs for the new construction types are similar to those required for Type I construction, which is primarily steel and concrete. (See Table 1.) They are found in IBC Table 621, which includes FRR requirements for all construction types and building elements, however, other code sections should be checked for overriding provisions (e.g., occupancy separation, shaft enclosures, etc.) that may alter the requirement.

| Table 1: FRR Requirements (Hours) for Tall Mass Timber Construction Types and Existing Type I |
|---|---|---|---|---|---|---|
| Building Element | I-A | II-A | I-A | II-A | I-B | II-B |
| Interior Bearing Walls | 3 | 3 | 2 | 2 | 2 | 2 |
| Exterior Walls | 2 | 2 | 2 | 2 | 2 | 2 |
| Floor and Roof Systems | 2 | 2 | 2 | 2 | 2 | 2 |
Shaft Wall Requirements in Tall Mass Timber Buildings

Shaft Enclosure Requirements in the 2021 IBC

A shaft is defined in Section 202 of the 2021 IBC as “an enclosed space extending through one or more stories of a building, connecting vertical openings in successive floors, or floors and roof.” Therefore, shaft enclosure requirements apply to stairs, elevators, and mechanical-electrical-plumbing (MEP) chases in multi-story buildings. While these applications may be similar in their fire design requirements, they tend to differ in terms of their assemblies, detailing, and construction constraints.

Shaft enclosures are specifically addressed in IBC Section 713. However, because shaft enclosure walls must be constructed as fire barriers per Section 713.3, many shaft wall requirements reference provisions for fire barriers found in Section 707.

Allowable Shaft Wall Materials

Provisions addressing materials permitted in shaft walls are relatively new to the category of wood products. Mass timber can be constructed utilizing construction Types IV A, IV-B, or IV-C, as is that structural elements of Type IV construction primarily of wood products.
EARLY TALL WOOD CODE ADOPTION
Statewide Alternate Method (SAM) Number 18-01 provides prescriptive path elements for Tall Wood Buildings of mass timber construction. This alternate path includes scientific conclusions established by the International Code Council’s Ad Hoc Committee on Tall Wood Buildings that were incorporated into fourteen national proposals and utilizes concrete, steel or masonry for the vertical elements of the seismic force-resisting system.

The provisions detailed in the SAM are crafted to coincide with the 2014 Oregon Structural Specialty Code (OSSC) when selected for use.

Three new types of construction are introduced under this method, all three of which are organized under Type IV construction, typically referred to as heavy timber.

The new types of construction are:

- Type IV A
- Type IV B
- Type IV C
Table 504.3

<table>
<thead>
<tr>
<th>Occupancy Classification</th>
<th>See Footnotes</th>
<th>Type I A</th>
<th>Type I B</th>
<th>Type II A</th>
<th>Type II B</th>
<th>Type II C</th>
<th>Type II D</th>
<th>Type III A</th>
<th>Type III B</th>
<th>Type III C</th>
<th>Type III D</th>
<th>Type IV A</th>
<th>Type IV B</th>
<th>Type IV C</th>
<th>Type IV D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, E, F, M, S, U</td>
<td>NS<sup>b</sup></td>
<td>UL 160</td>
<td>65</td>
</tr>
<tr>
<td>S</td>
<td>UL 180</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td>75</td>
<td>270</td>
<td>180</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>H-1, H-2, H-3, H-5</td>
<td>NS<sup>c</sup>-<sup>d</sup> S</td>
<td>UL 160</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>120</td>
<td>90</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>H-4</td>
<td>NS<sup>e</sup>-<sup>f</sup> S</td>
<td>UL 180</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td>75</td>
<td>140</td>
<td>100</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>I-1 Condition 1, I-3</td>
<td>NS<sup>g</sup>-<sup>h</sup> S</td>
<td>UL 160</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>180</td>
<td>120</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>I-1 Condition 2, I-2</td>
<td>NS<sup>i</sup>-<sup>j</sup> S</td>
<td>UL 180</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td>75</td>
<td>180</td>
<td>120</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>I-4</td>
<td>NS<sup>k</sup></td>
<td>UL 160</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>180</td>
<td>120</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>R</td>
<td>NS<sup<l</sup></td>
<td>UL 180</td>
<td>85</td>
<td>75</td>
<td>85</td>
<td>75</td>
<td>270</td>
<td>180</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
</tbody>
</table>
Denver Adopts Tall Mass Timber Codes

On December 23, the City of Denver voted to adopt the 2019 Denver Building Code, which includes the tall mass timber code provisions approved for the 2021 International Building Code (IBC).

As part of the adoption of the new code, there will be a four-month period where new projects can use either the 2016 Denver Building Code or the newly-adopted 2019 version. After four months, all building and fire code permits will be processed under the 2019 Denver Building Code.

“We congratulate the City of Denver on incorporating mass timber into its building codes, and recognizing the potential of this new category of wood products to revolutionize the way America builds,” said American Wood Council president & CEO Robert Glosowski. “Mass timber offers the strength of historic building materials with lower weight, and, in the rare event of a fire, has inherent fire resistance. Beyond the aesthetic qualities of mass timber that building owners and designers are seeking, wood is among the most energy-efficient and environmentally friendly of all construction materials, storing carbon from the atmosphere for long periods of time.”

The adopted proposal to recognize mass timber in the new code was submitted by Dr. Gregory R. Kingsley on behalf of the Structural Engineers Association of Colorado. The American Wood Council provided technical assistance to the city in support of the proposal.

The 2019 Denver Building Code will now recognize three new types of construction that also are included in the 2021 IBC:

AMENDMENTS TO THE BUILDING AND FIRE CODE FOR THE CITY AND COUNTY OF DENVER
The 2019 Denver Building and Fire Code includes the following codes except as amended herein.

APPENDIX U
TALL WOOD BUILDINGS

SECTION U101
GENERAL

U101.1 Purpose. The purpose of this appendix is to provide criteria for three new mass timber construction types: Type IV-A, Type IV-B, and Type IV-C. These building types expand the allowable use of mass timber construction to larger areas and greater heights than allowed for Type IV-HF construction.

U101.2 Scope. The provisions in this appendix are in addition to or replace the sections in the 2018 International Building Code where Types IV-A, IV-B, and IV-C construction are used. Where building Types IV-A, IV-B, or IV-C are not used, this appendix does not apply.

SECTION U102
AMENDMENTS TO THE INTERNATIONAL BUILDING CODE
(Under use of this appendix chapter, the following sections shall be modified or added as follows and shall supersede the corresponding sections in the International Building Code or Denver amendments to the International Building Code)
H.B. 54 Building Construction Amendments

Enrolled

Printer Friendly

BUILDING CONSTRUCTION AMENDMENTS

2020 GENERAL SESSION

STATE OF UTAH

(5) "Utah Code" means the Utah Code Annotated (1953), as amended.

Section 2. Section 15A-2-101 is amended to read:

15A-2-101. Title -- Adoption of code.

(1) This chapter is known as the "Adoption of State Construction Code."

(2) In accordance with Chapter 1, Part 2, State Construction Code Administration Act, the Legislature repeals the State Construction Code in effect on July 1, 2010, and adopts the following as the State Construction Code:

(a) this chapter;

(b) Chapter 2a, Tall Wood Buildings of Mass Timber Construction Incorporated as Part of State Construction Code;

(c) Chapter 3, Statewide Amendments Incorporated as Part of State Construction Code; and

(d) Chapter 4, Local Amendments Incorporated as Part of State Construction Code;

(e) Chapter 6, Additional Construction Requirements.

Section 3. Section 15A-2-102 is amended to read:

As used in this chapter and Chapter 2a, Tall Wood Buildings of Mass Timber Construction Incorporated as Part of State Construction Code, Chapter 3, Statewide Amendments Incorporated as Part of State Construction Code, and Chapter 4, Local Amendments Incorporated as Part of State Construction Code:
Ladies and Gentlemen -

This message is sent to inform you that members of the Board of Building Regulations and Standards (BBRS) have decided to take a different path with regard to the tenth edition building code.

Initially, BBRS members intended to use the 2018 International Codes as the basis for the tenth edition, targeting an implementation date of January, 2020. For numerous reasons, they have decided to redirect efforts and, instead, plan to develop the tenth edition code using the 2021 International Codes as a template, with an effective date of January 1, 2021.

This effort does not affect promulgation of new energy code requirements based on the 2018 International Energy Conservation Code (IECC) scheduled to become effective on January 1, 2020. (Massachusetts General Law Chapter 143, Section 94(o) requires BBRS members to advance energy provisions on a particular cycle.)
QUESTIONS?

Ricky McLain, PE, SE
Senior Technical Director - WoodWorks

Ricky.mclain@woodworks.org
(802)498-3310
Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The Wood Products Council 2020