Climate Emergency

Time to quit.
Architecture has 10 years to kick its CO2 habit and get on the right side of climate change. Energy efficiency was just the first step. The next is to cut emissions from building materials.

We are here in 2020
Peak at 1.5 °C
Global CO₂ Emissions by Sector

Transportation 23%

Industry 20.3%
(incl. building finishes, glass, equipment, and plastics, rubber, paper, other)

Concrete, Steel & Aluminum 22.7%
(incl. buildings & infrastructure)

Building Operations 28%

Other 6%

Concrete 11.1%, Steel 10.1% & Aluminum 1.5%
(approximate, 2017)

Source: IEA, Global ABC

Edward Mazria
Architecture 2030
Embodied Carbon

The emissions associated with building construction, including extracting, transporting, and manufacturing materials.
Principles of Procurement

• Carbon Sequestration
• Timber Sourcing
• Adhesives
• Transportation to Site
Carbon Sequestration

1. Logging raw or procuring recycled wood
2. Manufacturing wood products
3. Transit
4. Use
5. End of life
How much carbon does timber store?

One square meter of a wooden wall stores **50kg** of carbon.

Producing one square meter of concrete wall emits **110kg** of CO_2.

Source: Metsä Wood
How do designs compare?

Building Structure

Steel & Concrete
- Total GWP (kg CO₂e/m²)
 - Steel frame & Precast slab:
 - 153.9 kg CO₂e/m²
 - Concrete slab:
 - 10.7 kg CO₂e/m²
- Ready mix concrete slab: 1%, 4% Cement
- Ready mix concrete slab: 1%, 4% Sand
- Ready mix concrete slab: 1%, 4% Water

Hybrid (Steel + Timber)
- Steel frame & CLT floors:
 - 117.1 kg CO₂e/m²
 - CLT floors:
 - 5.5 kg CO₂e/m²
- Specifications:
 - Steel beams
 - CLT panels

Timber
- Total GWP (kg CO₂e/m²)
 - G3: 134 kg CO₂e/m²
 - G4: 14 kg CO₂e/m²
- Ready mix concrete slab: 1%, 4% Cement

Steel
- Total GWP (kg CO₂e/m²)
 - Steel frame & Slimfloor:
 - 23.7 kg CO₂e/m²
 - Steel frame:
 - 19.6 kg CO₂e/m²
- Specifications:
 - Steel beams
 - Ready mix concrete slab: 1%, 4% Cement

Concrete
- Total GWP (kg CO₂e/m²)
 - Steel frame & Precast slab:
 - 237.7 kg CO₂e/m²
 - Steel frame & Composite slab:
 - 20.5 kg CO₂e/m²
- Ready mix concrete slab: 1%, 4% Cement

Steel & Composite
- Total GWP (kg CO₂e/m²)
 - Steel frame & Composite slab 3m span:
 - 230 kg CO₂e/m²
 - Steel frame & Composite slab 4.5m span:
 - 250 kg CO₂e/m²
- Specifications:
 - Steel beams
 - Ready mix concrete slab: 1%, 4% Cement

Concrete
- Total GWP (kg CO₂e/m²)
 - Self-compacting concrete slab:
 - 357.3 kg CO₂e/m²
 - Ready mix concrete slab: 1%, 4% Cement

- LCPC standard: 8.0 kg CO₂e/m²
- Ready mix concrete slab: 1%, 4% Sand
- Ready mix concrete slab: 1%, 4% Water

- Ready mix concrete slab: 1%, 4% Cement
- Ready mix concrete slab: 1%, 4% Sand
- Ready mix concrete slab: 1%, 4% Water
Principles of Procurement

• Carbon Sequestration

• Timber Sourcing

• Adhesives

• Transportation to Site
Sustainable Forestry
Forest Management Certification

• Promotes the ethical harvesting and extraction processes
• Assures the legal right of harvest
• Confirms traceability of wood throughout the supply chain via Chain-of-Custody (COC)
Certification Schemes

Ensure products come from responsibility managed forests that provide environmental, social and economic benefits

Forest Stewardship Council (FSC)

The Programme for the Endorsement of Forest Certification (PEFC)

Sustainable Forestry Initiative (SFI)
Global FSC-certified forest area

- **North America**: 34.9% of total FSC-certified area (99,481,877 ha) - 253 certificates
- **Europe**: 49.4% of total FSC-certified area (99,104,378 ha) - 727 certificates
- **South America & Caribbean**: 6.9% of total FSC-certified area (13,771,764 ha) - 267 certificates
- **Africa**: 5.5% of total FSC-certified area (7,092,573 ha) - 50 certificates
- **Oceania**: 1.1% of total FSC-certified area (2,673,681 ha) - 39 certificates

Total certified area: 208,868,563 ha

No. countries: 86

Total no. certificates: 1,588

Based on numbers from FSC International

Created: 01.01.2018
Not all schemes are equal

Some...

• Take a conservation-based approach to preserving forest ecosystems

• Limit clear-cuts to 6 acres, or allow clear-cuts up to 120 acres

• Require all uncertified/illegal material be excluded from products, others allow a small amount of cross-contamination

Ask Your Suppliers:

Do you provide sustainably sourced wood certified by the FSC, PEFC or SFI forest management schemes?

Can you provide Chain-of-Custody certificates to confirm traceability of your products?
Principles of Procurement

- Carbon Sequestration
- Timber Sourcing
- Adhesives
- Transportation to Site
Adhesive Ingredients

Same functionality. Different chemical structure.

- Urea-formaldehyde (UF)
- Melamine Urea-formaldehyde (MUF)
- Phenol Formaldehyde (PF)
- Phenol Resorcinol Formaldehyde (PRF)
- Polyurethane (PUR)

- Formaldehyde-based adhesives and volatile organic compounds negatively impact human health
- Specify formaldehyde-free polyurethane (PUR) adhesive whenever viable
Manufacturers & Adhesives

<table>
<thead>
<tr>
<th>Manufacturers</th>
<th>Certif.</th>
<th>GreenGuard Gold</th>
<th>Ingredient Reporting</th>
<th>Adhesive Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordic Structures*</td>
<td>FSC</td>
<td>Yes</td>
<td>Yes</td>
<td>PUR</td>
<td>Chibougamau, QC, CA</td>
</tr>
<tr>
<td>Structurlam*</td>
<td>FSC & SFI</td>
<td>Yes</td>
<td>No</td>
<td>PUR</td>
<td>Okanagan Falls, BC</td>
</tr>
<tr>
<td>SmartLam*</td>
<td>FSC & SFI</td>
<td>TBD</td>
<td>TBD</td>
<td>PUR</td>
<td>Columbia Falls, MN</td>
</tr>
<tr>
<td>KLH*</td>
<td>FSC & PEFC</td>
<td>TBD</td>
<td>TBD</td>
<td>PUR</td>
<td>Teufenbach, Austria</td>
</tr>
<tr>
<td>International Beams*</td>
<td>FSC</td>
<td>No</td>
<td>No</td>
<td>PUR</td>
<td>Pohenegamook, QC, CA Tillosonburg, ON, CA Dothan, AL</td>
</tr>
<tr>
<td>Structure Fusion</td>
<td>FSC & SFI</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>Saint-Augustin-de-Desmaures, QC Canada Note: Only produces NLT</td>
</tr>
<tr>
<td>Katerra**</td>
<td>PEFC</td>
<td>No</td>
<td>No</td>
<td>PUR</td>
<td>Spokane, WA</td>
</tr>
<tr>
<td>Binderholz*</td>
<td>PEFC</td>
<td>No</td>
<td>No</td>
<td>PUR</td>
<td>Hallein & Unternberg, Austria</td>
</tr>
<tr>
<td>LignaCLT</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Charlotte, NC</td>
</tr>
<tr>
<td>DR Johnson*</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>TBD</td>
<td>Riddle, OR</td>
</tr>
</tbody>
</table>

* Facility produces their own CLT slab. Others purchase CLT slabs from different locations.
** Katerra is set to open a CLT manufacturing facility in Spokane, WA which will be operational in 2019. Following 12 months of operation the company will commence with obtaining an EPD.

Source: Thornton Tomasetti, 2019
Principles of Procurement

• Carbon Sequestration
• Timber Sourcing
• Adhesives
• Transportation to Site
How is timber getting on-site?

- Carbon impact of wood is heavily dependent on type of haulage and vehicles used for delivery
- Consider the carbon cost of transporting timber versus what is locally available
Fig. 4.5: Comparison of carbon emissions between timber design and concrete design over life cycle of structural materials in 12-story tower, when wood is not sourced from sustainably managed forests.

Credit: Arup / Bruce King
Is it sustainable?

Be conscious of the key elements which distinguish sustainable practices

Embodied Carbon
- Evaluate a timber (or hybrid) option alongside to traditional steel or concrete design to reduce carbon impacts

Timber Sourcing
- Ensure sustainable forestry certification for wood through FSC, PEFC or SFI management schemes & verify traceability with Chain-of-Custody

Adhesives
- Opt for formaldehyde-free adhesives to decrease negative health impacts and improve recyclability

Transportation to Site
- Is there a local supply option? If not, which suppliers can provide the most effective certified option?
General Contractor’s Perspective

Personal:
Live in Maine
On the Maine Mass Timber Advisory Council at UMaine
Have (3) Chain Saws – Stihl is my fav.
Drive a full size SUV
Like Land Rover Defenders
Have a 2010 boat with a 135HP Mercury Optimax 2-stroke

Career:
18 years at Consigli Construction - Construction Manager Self Performing Contractor
1 year at Revit Technology – (prior to Autodesk acquisition)
7 years Structural Engineer for in Massachusetts
 • 70% steel and concrete design
 • 25% restoration & Building Envelope Consulting
 • 5% wood / glulam, stick frame design
Not Me

Not a Timber Industry Lobbyist

No longer actively practicing Structural Engineering

Huge Advocate for 3D modeling / Off Site Construction

Realist / Pessimist / Advocate for the right system for the project

Advocate for Preconstruction Services being implemented to drive efficiency into Construction and Manufacturing buildings

Passionate about concept of attracting a Mass Timber (CLT & Glulam manufacturer) to New England (Specifically advocating for Maine)
General Contractor’s Perspective

Understand the benefits and potential uses
• Rationale for the benefits

Discuss Challenges with Mass Timber and what makes it a success on a project
• Examples

Compare the environmental impact
• Hmmm
Definition of Mass Timber – Industry Term

Mass Timber: Not Yet a Codified Term
Generally Covers elements also termed “Heavy Timber”
Benefits and Potential Uses

What has been Historical Sustainable Choice for Building Structural Systems?
• Don’t Build New – Renovate/Restore
• Build New: Recycled Steel

When was the last new Structural System available to engineers (that is not a proprietary / licensed / single source product)?
• Girderslab/D-beam/Bubbleslab/Others?

What was the last building structure that you were able to grow?
• Did it Exceed 5 Stories?

What Entire Structural System Forces a Manufacturing Mindset?
• That is as good as modeled Structural Steel in Tekla/SDS or other steel detailing software?
Mass Timber – Potential Uses

IV-A
18 Stories
270'
TYPE IV-A

IV-B
12 Stories
180'
TYPE IV-B

IV-C
9 Stories
85'
TYPE IV-C
Construction Industry Productivity

Please start Designing to allow Contractors to adopt a Manufacturing Mindset
Mass Timber – Drives a Manufacturing Mindset

Forces Planning
Mass Timber – Manufacturing forces planning earlier
Mass Timber – Manufacturing Opportunities
Mass Timber – Manufacturing Opportunities
Mass Timber – Potential for Innovation

Composite Concrete Topping?
How to Fail Fast with Mass Timber

Engaging a Design Team that has not completed a similar project in Mass Timber

Considering Mass Timber after hiring Architect and Engineers

Asking Designer to switch out preliminary design with Mass Timber

Engaging a Contractor that has not completed a Mass Timber Project

Asking a Contractor with Experience in Mass Timber that doesn’t have a person on the team with Experience with Mass Timber
Where Mass Timber May be a Solution

- Client has Sustainability Goals for the Project
 - Carbon is a factor in material choices (or value is assigned)
- Choice of Structure is part of first Design Options
- Structure can accommodate a smaller column grid pattern
- Structure can accommodate spans of 15 to 20 feet of floor plate
- Structure can accommodate a bearing wall design
- Client allows early procurement of Subcontractors / Vendors
- Soil Conditions allow for lighter building to receive advantage
- Exposed Structure is of importance
- Structure is 6 stories or greater
- Exposed Utilities are accepted
- Solid Wall Elements can do more than one job
 - Support Vertical Loads
 - Can be the Lateral Force Resisting System
 - Can be the finished interior surface
 - Can be the building envelope and installed during erection
Example of a number of Advantages

* Credit – Generate Technologies, Consigli, Buro Happold
Cross Section of Timber Option

* Credit – Generate Technologies, Consigli, Buro Happold
Win: Client Accepts Exposed Utilities
Structural Option Pricing Comparison

*Credit – Generate Technologies, Consigli, Buro Happold

CONSTRUCTION COST (PER SQUARE)
Global Warming Comparison

Credit – Generate Technologies, Consigli, Buro Happold

This graph illustrates the GWP broken down by building assembly. The Steel, Concrete and Hybrid Steel design options have a GWP burden for columns and beams due to their steel and concrete members. In the Post, Beam & Plate option, columns and beams appear as a small negative, which in this study equates to trivial impact and lower net GWP. This impact or benefit is most evident in the CLT Cellular option, where the CLT of the structural skin reduces the overall impact of the structural system. It is also evident that the timber options generally require more interior finish, in order to achieve acceptable acoustics and fire performance. Furthermore, the timber CLT/GUM and CLT Cellular options indicate savings in the exterior envelop, as their structural systems are also part of their enclosure systems.
Environmental Impact

General Contractor’s Perspective

- Hmmm
- Remember who I am not:
- Remember who I am:
First a Quote

We are consuming our forests three times faster than they are being reproduced. Some of the richest timber lands of this continent have already been destroyed, and not replaced, and other vast areas are on the verge of destruction.

Who said it? And When?
ADDRESS OF PRESIDENT ROOSEVELT TO
THE DEEP WATERWAY CONVENTION AT
MEMPHIS, TENNESSEE, OCTOBER 4, 1907

without supervision of any kind. We are

40

consuming our forests three times faster
than they are being reproduced. Some
of the richest timber lands of this contin-
ent have already been destroyed, and not
replaced, and other vast areas are on the
verge of destruction. Yet forests, unlike
mines, can be so handled as to yield the
best results of use, without exhaustion,
just like grain fields.
Environmental Opinion

- Timber will Re-grow
- We MUST maintain our Working Forests – without a market for lumber -- they will be developed to their highest and best use
Questions to ask Construction Manager

• How to Price Mass Timber Systems at Concept Level
• How to hold Pricing after Concept Level
• How to Procure Mass Timber Manufacturer / Fabricator at DD
• How to Procure a Structural of CLT, Glulam, Steel and Concrete (Noting that structure may mix all materials)
• How to Coordinate MEPs with Timber Structure
• How to Mitigate Fire Risk during Construction
• Can discuss the Tall Wood Requirements for Construction phase fire management
• How to include a schedule advantage in early pricing studies
• How to protect the material after it is erected
• How to price sound attenuation measures
• How to manage the Delivery and Site Logistics of receiving Timber
 • From US based Vendor
 • From EU based Vendor
Planning Mass Timber – PROTECTION – Water Staining
Planning Mass Timber – PROTECTION
Planning Mass Timber – COORDINATION
Planning Mass Timber – Protection / Receiving
QUESTIONS?

Ricky McLain, PE, SE

Ricky.mclain@woodworks.org
802.498.3310

Alexandra Davis, LEED Green Associate

ADavis@ThorntonTomasetti.com
207.245.6060

Matt Tonello, PE

MTonello@consigli.com
207.253.5749