BUILDINGENERGY BOSTON

Passive House Ventilation:

Humidity Considerations in Multi-Family Residential

August 13, 2020 · 3:00 pm

Presenter:

Mike Woolsey, Certified Passive House Designer (Swegon)

Course Description

Passive House buildings and their occupants benefit from airtight construction. Infiltration and exfiltration are minimized, directly reducing energy used to ventilate, heat, and cool the building. Occupants benefit from the elimination of drafts and warmer indoor surface temperatures. Airtight construction also hinders airborne indoor moisture from escaping the building through the building skin, or from dry outdoor air infiltrating the building. Multifamily residential projects are at greater risk of moisture buildup due to the way spaces are used. This course examines causes of and solutions to humidity buildup in Passive House buildings.

Learning Objectives

At the end of this program, participants will be able to understand:

- 1. the impact of airtight construction on moisture control
- 2. indoor humidity sources and interactions
- 3. ventilation system influence on indoor humidity
- 4. tradeoffs between humidity control and energy savings

Air-tight Construction and Indoor Moisture

PASSIVE HOUSE CHARACTERISTICS

AIRTIGHT CONSTRUCTION Saves Energy - Requires Continuous Ventilation

Airtight layer

- saves energy by minimizing infiltration of unconditioned air, and exfiltration of conditioned air
- improves comfort by reducing draftiness, enhancing insulation performance and keeping fine airborne particles outside
- *traps moisture* and contaminants Continuous ventilation
- Replaces moist and contaminated air with conditioned fresh air

INDOOR HUMIDITY for comfort, health, resilience

PASSIVE HOUSE VENTILATION SOLUTION Typical Multifamily Residence - Centralized

PASSIVE HOUSE VENTILATION SOLUTION Typical Multifamily Residence – as installed

AIRTIGHT BUILDING Summer – cooling

Summer - High Outside Air Humidity

- Energy Recovery system rejects outside air moisture
- ✓ Post-cooling system further removes moisture from Supply Air
- ✓ Moist Indoor Air continuously replaced by cool, dry air
- ✓ Indoor surfaces are warm, posing low condensation risk

AIRTIGHT BUILDING Winter – heating

If the outside temperature is:	Then condensation will occur on the inner glass surface if the interior relative humidity rises above:		
° C (°F)	Double Glazed Windows % Triple Glazed Window of Humidity of Humidity		
-40 (- 40)	25	36	
-34 (- 35)	28	39	
-28 (- 20)	33	44	
-23 (- 12)	38	48	
-18(0)	44	53	
-12 (10)	50	63	
-7 (20)	57	67	
-1 (30)	63	72	

Winter - Low Outside Air Humidity

- ✓ Outside Air contains little moisture
- RISK: Energy Recovery system may return building moisture to the building
- PASSIVE HOUSE RISK: Airtightness reduces moisture egress through building leaks and permeance
- Section 2012 PASSIVE HOUSE RISK: Airtightness prevent infiltration of dry air
- Surfaces are cool, more likely to condense than summer

Indoor Humidity Sources and Interactions

INDOOR HUMIDITY Sources*

Liquid moisture	Gaseous moisture	(Solid)
Precipitation	Outdoor Air (summer)	lce
Construction materials (concrete, mortar, plaster, etc)	Occupant Respiration and Perspiration	
Condensation	Occupant activities (cooking, showering, laundering, etc.)	
Deferred maintenance (pipe leaks, groundwater, envelope leaks)	Occupant possessions (houseplants, pets, firewood)	
*Source: 2017 ASHRAE Fundamentals, Chapter 36 Moisture Management in Buildings ASHRAE, Atlanta GA		

INDOOR HUMIDITY Load Estimating Methods

ANSI/ASHRAE Standard 160-2016 (Supersedes ANSI/ASHRAE Standard 160-2009) Includes ANSI/ASHRAE iddenda listed in Ances D

Criteria for Moisture-Control Design Analysis in Buildings

See Annes D for approval dates by the A3HRAB Spectral Committee, the A6HRAE Board of Directory, and the American National Standards Institute.

This laurdard is under continuous manameters by a Standing Standard Propert Dimensione GMPC (to view) the Standards. Committee tai autobalance a documented program for inegative policitation of addentia on minimum. Individing procedures for interly, documented, invalidante and/or an experiment for change to any pair of the Standard. The studies autobalance may interprotection, and deadlines may be obtained in electrosic form from the ASPRAE velocities (now attracting to a standard to a term from the Series Manage of Standards). The inset obtained series. (711 Tube Circle, NE, Adams, GA 10336-3304, 125 E-mail uniterplication and pair for ASPRAE Campanets Series. (711 Tube Circle, NE, Adams, GA 10336-3304, 125 E-mail uniterplication and Canada). The Standard Series. (711 Tube Circle, NE, Adams, GA 10336-3304, 125 E-mail uniterplication and Canada). The Standard Series. (711 Tube Circle, NE, Adams, GA 10336-3304, 125 E-mail uniterplication and Canada). The standard series of the Standard series of the Standard to a standard t

4.3 Indoor Design Humidity. If the HVAC equipment and controls are included in the design, the intended design indoor humidity shall be used.

Required ERV Design Input Values

- Outside Air Temperature
- Outside Air Humidity
- □ Supply Air Temperature
- Supply Air Humidity
- □ Return Air Temperature*
- **Return Air Humidity***

*Return Air conditions represent occupied zone conditions, are often assumed based on tradition and commercial buildings, and therefore deserve close review for Passive House projects

INDOOR HUMIDITY Load Estimating Methods

Table 15.1 Moisture production due to occupant breathing and sumating

Autho	r i	M	oisture production rate per person	
Author BS5250 Annex 27 HMSO (1970) Finbow (1982) BRE (1985) CTBSE (1985) CTBSE (1986) CTBSE (1999) Buyd et al (1990) Angell and Olaen (1988) Sturn (1992) Latiburek (1994) Harsun (2002) Tresch		74 0. 0. Pe 0. 44 0. 1. 1. 1. 1. 5. 8	leep (40g/h) Awake (55g/h) hit asleep (30g/h) Adult awake (55g/h) Child adeep (12.5g/h) Child awake (40g/h 625kg/day 75.2kg/day ran adeep (0.25–0.5kg/day) Person active (0.78–1.5kg/day) 9h–2.4kg/day 1-100g/h 7425kg/day 26kg/day 26kg/day 26kg/day 9h ble 15.2 Moisture due to cooking	
Yik et a	Author		Moisture production rate per person	
	Annex 27 (uchades diabwiahing) (HMSO (1970) Finbase (1982) BRE (1985) CIBSE (1986, 1999) Boyd et al (1988) Angol and Olani (1988) La(basek (1993) Hamon (2002)		Broakiast (50g/h) Lunch (150g/h) Dinner (300g/h) 0.525hg/day 0.6kg/day 0.5~1kg/day 0.5~1kg/day 0.6 (3kg/day) Electricity (2kg/day) 0.6 (3kg/day) Electricity (1.0kg/day) Broakfast gat/electricity (520/200g/day) Lunch gat/electricity (300/6b(g/day)) Table 15.3 Monstore due to washing clothes	
	Treschel (2001) Roumeau (1984)	Author	Moisture production rate per dwelling	
	Predove (2000)	R55250 Annex 22 HM50 (1970) Finbraw (1982) BRE (1985) CIBSE (1986, 1999) Mayringer (1985) Bopd et al (1988) Smin (1992) Hamm (2002)	0.5kg/day 0.2kg/day 2.0kg/day 1.0kg/day 0.5~1.0kg/day 0.5~1.8kg/day 0.5kg/day 0.6kg/day 1.9kg/day 0.6kg/day 1.9kg/day 0.5kg/day 1.9kg/day 0.5kg/day 1.9kg/day 0.5kg/day	

A Handbook of Sustainable Building Design & Engineering

e

An Integrated Approach to Energy, Health and Dperational Performance

Tagan Minnover and Max Sontamours

HUMIDITY CONTROL EXAMPLE Apartment Humidity Loads

Source	Pints	Grains
5 Minute Shower	0.5	3650
Indoor drying of cloths	4-6 per load	29225-43840 per load
5-7 house plants	1/day	7300/day
Washing Dishes (Dinner, family of 4)	0.7	5100
Cooking (Dinner, Family of 4)	1.2 (1.5 with gas cooktop)	8770 (10950 with gas cooktop)
Respiration/Perspiration	0.4/hr	3040/hr
Evaporation, New Construction Materials	10+/day	73000+/day
1 Cord Green Firewood, stored indoors for 6 mo	400-800	2.9M-5.8M

*Source: Minnesota Extension Service, University of Minnesota

INDOOR HUMIDITY interactions*

Outside conditions	Inside conditions	Envelope	HVAC
Temperature	INTERIOR SOURCES	Heat flow	Heating/cooling
RELATIVE HUMIDITY	Temperature	AIR FLOW	DE- /HUMIDIFICATION
Solar Radiation	Relative Humidity	LIQUID/VAPOR FLOW	(De)Pressurization
WIND	Air pressure		VENTILATION
Vapor Pressure	Vapor pressure		
Precipitation			
*2017 ASHRAE Fundamentals, Chapter 36 Moisture Management in Buildings ASHRAE, Atlanta GA			

Ventilation System Design for Humidity Control

SYSTEM DESIGN Heat or Energy Recovery?

SYSTEM DESIGN - HEAT RECOVERY VENTILATOR (HRV) Winter Operation – dry indoor air

Function	Result
Continuous Ventilation	☑Safe and comfortable indoor air
Heat recovered from Return Air	☑Heating costs reduced ☑new energy use reduced
Moisture in Return Air is exhausted	 Drying effect when Outside Air is drier than Return Air Possibility of over-drying Summer heat-rejection benefit is lost

SYSTEM DESIGN - ENERGY RECOVERY VENTILATOR (ERV) Winter Operation – dry indoor air

Function	Result
Continuous Ventilation	☑Safe and comfortable indoor air
Heat recovered from Return Air	☑Heating costs reduced ☑new energy use reduced
Moisture recovered from Return Air	☑Increased comfort

SYSTEM DESIGN - HEAT RECOVERY VENTILATOR (HRV) Winter Operation – moist indoor air

Function	Result
Continuous Ventilation	☑Safe and comfortable indoor air
Heat recovered from Return Air	☑Heating costs reduced ☑new energy use reduced
Moisture in Return Air is exhausted	 Drying effect when Outside Air is drier than Return Air Possibility of over-drying Summer heat-rejection benefit is lost

SYSTEM DESIGN - ENERGY RECOVERY VENTILATOR (ERV) Winter Operation – moist indoor air

SYSTEM DESIGN Centralized or Decentralized?

SYSTEM DESIGN Decentralized Ventilation + Decentralized dehumidifier

SYSTEM DESIGN Centralized Ventilation – decentralized dehumidification

SYSTEM DESIGN Centralized Ventilation – centralized dehumidification

SYSTEM DESIGN Controls - Reduce energy recovery rate

37 Passive House Ventilation: Humidity Considerations in Multi-Family Residential Buildings

SYSTEM DESIGN Controls - Reduce energy recovery rate

38 Passive House Ventilation: Humidity Considerations in Multi-Family Residential Buildings

SYSTEM DESIGN Controls - Reduce energy recovery rate

Wheel Speed	Recovery rate
10	84%
6	84%
4	83.7%
2	82%
1	74%
0.5	50%
0.34	34%
0.2	20%
0.1	10%
0.05	5%

Slowing the wheel rotation

- Reduces humidity transfer
- Reduces heat transfer
- Requires ability to precisely control wheel speed

SYSTEM DESIGN Controls – Incorporate Boost Mode

Boost (Increase) Supply and Return Air flowrate

- ERV Increases extraction rate of moist air
- ERV Increases rate of dry air flushing
- DAMPERS provide variable flow control
- Boost also useful for adding occupant comfort control

SYSTEM DESIGN Reduce energy recovery rate – core bypass

Humidity Control Example - Winter

HUMIDITY CONTROL EXAMPLE High Density Apartment

DESIGN

- > Area: 952 ft²
- > Ceiling: 8 ft
- > 3 bedroom, 2 bathroom
- > Design Occupancy: 4
- > Laundry in common area
- > Room setpoint: 72 degF
- > Outside Air:
 - > 15.4 degF Dry Bulb
 - > 14.3 degF Wet Bulb
- > Ventilation rate 85 cfm

HUMIDITY CONTROL EXAMPLE High Density Apartment

EVALUATION 1-hour extreme moisture generation

Cooking Dishwashing 2 showers 4 occupants

Centralized v. Decentralized HRV v ERV

HUMIDITY CONTROL EXAMPLE COMPARISON #1: Decentralized Ventilation – HRV vs ERV

HRV - Sensible Energy Recovery (heat)							
Airtightness	Humidity	Dehumidification		Result after 1 hour			
	Gain (+)	Infiltration (-)	HRV Supply Air (-)	Humidity Ratio, at 72F	Relative Humidity, at 72F		
	gr/hr	gr/hr	gr/hr	gr/lb	%		
ASHRAE Std 90.1	33330	6240	7367	58	50.5		
Passive House	33330	1733 (72% less)	7367	66	56.5		

ERV - Total Energy Recovery (heat & moisture)

	Humidity	Dehumidification		Result after 1 hour	
	Gain (+)	Infiltration (-)	ERV Supply Air (-)	Humidity Ratio, at 72F	Relative Humidity, at 72F
	gr/hr	gr/hr	gr/hr	gr/lb	%
ASHRAE Std 90.1	33330	6240	1473 (80% less)	69	59
Passive House	33330	1733	1473 (80% less)	77	65.7

HUMIDITY CONTROL EXAMPLE COMPARISON #1: Decentralized Ventilation – HRV vs ERV

- Passive House: 72% less drying effect from infiltration than code building
- ERV: 80% less drying effect than HRV
- After one hour of extreme conditions assumed, ERV with inadequate humidity control capabilities returns too much moisture to the space
- Decentralized ERV system involves condensation risk

HUMIDITY CONTROL EXAMPLE COMPARISON #2: Centralized Ventilation – HRV vs ERV

HRV - Sensible Energy Recovery (heat)							
Airtightness	Humidity	Dehumidification		Result after 1 hour			
	Gain (+)	Infiltration (-)	HRV Supply Air (-)	Humidity Ratio, at 72F	Relative Humidity, at 72F		
	gr/hr	gr/hr	gr/hr	gr/lb	%		
ASHRAE Std 90.1	33330	6240	7367	58	50.5		
Passive House	33330	1733 (72% less)	7367	66	56.5		

ERV - Total Energy Recovery (heat & moisture)

Airtightness Humidity Gain (+)	5	Dehumidification		Result after 1 hour	
	Infiltration (-)	ERV Supply Air (-)	Humidity Ratio, at 72F	Relative Humidity, at 72F	
	gr/hr	gr/hr	gr/hr	gr/lb	%
ASHRAE Std 90.1	33330	6240	2947 (60% less)	66	56.5
Passive House	33330	1733	2947 (60% less)	74	63.6

HUMIDITY CONTROL EXAMPLE COMPARISON #2: Centralized Ventilation – HRV vs ERV

- ERV: 60% less drying effect than HRV (20 percentage points better than decentralized system)
- After one hour of extreme conditions assumed, ERV with inadequate humidity control capabilities returns *marginally* too much moisture to the space
- Decentralized ERV system involves marginal condensation risk

HUMIDITY CONTROL EXAMPLE Summary

Ventilation	Std.	Туре	New Rel. Hum. At 72F (%)
	90.1	Heat Recovery	50.5
		Energy Recovery	59
DECENTRALIZED	PH	Heat Recovery	56.5
		Energy Recovery	65.7
	90.1	Heat Recovery	50.5
CENTRALIZED		Energy Recovery	59.0
GENTRALIZED	PH	Heat Recovery	56.5
		Energy Recovery	63.6

HUMIDITY CONTROL EXAMPLE Summary

Tight Passive House construction impacts indoor humidity

Ultra low leakage rates can cause humidity to build up in apartments especially high density apartments Decentralized Total Energy Recovery Ventilation has greater risk

Humidity recovery causes humidity to build up to unacceptable levels. It may not be an issue in low density apartments Centralized Ventilation units can help

The diversity from connecting to multiple apartments can reduce humidity build up and allow additional savings from total energy recovery

ENERGY TRADEOFF

HUMIDITY CONTROL EXAMPLE HRV / ERV energy tradeoff

ENERGY MODELLING

Example systems above compared

- Enthalpy Wheel vs. sensible wheel
- Scenario 1 No cooling, hot water post-heating
- Scenario 2 VRF DX cooling w/ reheat and heat pump heating
- Defrost cycle included in analysis

HUMIDITY CONTROL EXAMPLE HRV / ERV energy tradeoff

GOLD Energy Evaluator

HUMIDITY CONTROL EXAMPLE HRV / ERV energy tradeoff – wheel frost control

Total recovery much greater than sensible due to lower frost point Almost twice winter energy recovery Wheel speed vs. energy transfer not linear Must slow wheel down to a few rpm to get capacity reduction

HUMIDITY CONTROL EXAMPLE Scenario #1: post-heating only

Energy Recovery Savings				
	System 1 Name	Total Energy Recovery	System 2 Name	Sensible Energy Recovery
Energy Recovery Type Outdoor Air Energy Load Annual Recovered Energy	kBtu kBtu	Enthalpy Wheel 21,238 18,977	ERV: 17.5% more recovery due to defrost control	Sensible Wheel 21,238 15,662
Remaining System Load	kBtu	2,261	ERV: 59.5% less	5,576
ASHRAE Std 90.1-2016 Comp	liant	Pass	load remaining	Fail- ER Effectiveness
ASHRAE Std 189.1 Complian	t	Pass		Fail - Fan Power Limitation

Financial				
	System 1 Nam	e Total Energy Recovery	System 2 Name	Sensible Energy Recovery
Design Cooling Load	Tons	0.5		0.5
Required Cooling Capacity	Tons	0.0		0.0
Design Heating Load	kBtu/h	7.7		7.7
Required Heater Capacity	kBtu/h	2.0		4
Design Humidifier Load	lb/h	N/A		N/A
Req'd Humidifier Capacity	lb/h	N/A		N/A
Capital Investment	\$	2,000		1,980
Simple Payback	yrs	1.6		
Internal Rate of Return	%	66%		

55 Passive House Ventilation: Humidity Considerations in Multi-Family Residential Buildings

HUMIDITY CONTROL EXAMPLE Scenario #2: VRF post-cooling & post-heating

Energy Recovery Savings				
	System 1 Name	Total Energy Recovery	System 2 Name	Sensible Energy Recovery
Energy Recovery Type		Enthalpy Wheel	ERV: 27.8% more	Sensible Wheel
Outdoor Air Energy Load	kBtu	27,774	recovery due to defrost control	27,774
Annual Recovered Energy	kBtu	16,179	dejrost control	12,664
Remaining System Load	kBtu	11,595	ERV: 23.5% less	15,110
ASHRAE Std 90.1-2016 Com	pliant	Pass	load remaining	Fail- ER Effectiveness
ASHRAE Std 189.1 Complian	t	Pass		Fail - Fan Power Limitation

Financial					
		System 1 Name	Total Energy Recovery	System 2 Name	Sensible Energy Recovery
Design Cooling Load	Tons		0.5		0.5
Required Cooling Capacity	Tons		0.3	ERV: 25% less	0.4
Design Heating Load	kBtu/h		7.7	cooling capacity	7.7
Required Heater Capacity	kBtu/h		2.0	required	4
Design Humidifier Load	lb/h		N/A		N/A
Req'd Humidifier Capacity	lb/h		N/A		N/A
Capital Investment	\$		2,000		1,980
Simple Payback	yrs		0.5		
Internal Rate of Return	%		189%		

56 Passive House Ventilation: Humidity Considerations in Multi-Family Residential Buildings

HUMIDITY CONTROL EXAMPLE HRV / ERV energy trade-off summary

Evaluate airtight highdensity apartments for winter humidity risks

Be especially careful with high density apartments and decentralized total energy recovery. Centralized total energy recovery should be okay. Always check humidity loads expected. Evaluate necessary humidity control measures.

Consider frequency of condensation risk

The hours of winter condensation risk are low. If the hours occur consecutively, mold growth risk increases. Humidity control measures can be specified to prevent condensation. Total Energy Recovery saves energy and reduces operating cost

ERV

- recover more sensible energy in winter
- maintain indoor humidity for comfort and health
- Also dehumidifies in summer
- Reduces size of cooling
 equipment

Continue Learning

Martello, Dylan. "Establishing Moisture Control in Multifamily Buildings - Party Walls Blog." *Party Walls - Steven Winter Associates*, Steven Winter Associates, 23 July 2019, www.swinter.com/party-walls/establishing-moisture-control-inmultifamily-buildings/.

Bednarova, Petra Vladykova. "What Is Airtightness? Or Is It Air Tightness...?" *Swegon Air Academy*, Swegon Air Academy, 16 Nov. 2018, www.swegonairacademy.com/2018/11/16/what-is-airtightness-or-is-it-airtightness/.

Abdul Hamid, A, et al. "Moisture supply Set Point for avoidance of moisture damage in Swedish multifamily houses", 6th International Building Physics Conference, IBPC Turin, Italy, 2015.

This concludes the presentation.

Please contact me for more information.

Mike Woolsey@Swegon.com swegon.com +1 800 565 8401

