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Overview

1 2020 Study:
Embodied Carbon in Residential Retrofits

2 2021 Study:
Embodied and Operational Emissions in Weatherization

3 Conclusions




Learning Objectives

1

2
3
A

Define and differentiate between embodied and
operational carbon emissions

Quantify the relative scales of embodied and operational
carbon emissions in residential weatherization

Analyze the time frame in which embodied and operational
carbon emissions occur in residential weatherization, and
how this applies to developing retrofit strategies

ldentify different approaches for a variety of specific retrofit
measures, and their relative impact on embodied and
operational carbon emissions
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blog/whitepapers/embodied-carbon-in-vermont-residential-retrofits

Intro and Purpose

The authors sought to fill a gap in the growing
body embodied carbon emissions analysis work
by studying the contribution of weatherization
materials, specifically in Vermont.

Quantify the embodied carbon associated with
residential retrofit projects.

Understand if and how weatherization work,
including material choices have changed over
time.

Aid in decision-making for future weatherization
scope and material selections from a climate
impact perspective




Determine and in Vermont by
geographic location.

Determine the in specific residential
building assemblies (walls, attics, band joist, foundation walls) and
if/how these choices have changed over time.

a) which to CO,e (carbon dioxide equivalent) emissions

b) which applications are the

Illustrate the and the associated
(by material and application).

3 Characterize the to understand:



building assemblies (walls, attics, band joist, foundation walls) and
if/how these choices have changed over time.

2 Determine the in specific residential

lllustrate the and the associated
(by material and application).



2020 Findings
#2: Types of insulation used in specific retrofit assemblies

Wood Framed Wood Framed

wall oy Wal * Closed cavity ceilings
and wood framed
walls, however,
showed a
proportional increase
in the use of closed
cell spray foam.

—> B33

Closed Cavity Ceiling (2012) Closed Cell SPF 249% | Dense Pack Cellulose 57%
Closed Cavity Ceiling (2016) Closed Cell SPF 48% | Dense Pack Cellulose 38%
Wood Framed Walls (2012) Closed Cell SPF 29% | Dense Pack Cellulose 42%
Wood Framed Walls (2016) Closed Cell SPF 55% | Dense Pack Cellulose 23%
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by application type, over time:

How are total CO2e emissions changing

over time?
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time for different applications?




by material type, over time:
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Intro and Purpose

Understand the relationship between embodied
emissions and operational emissions

Identify the threshold or “tipping point” between
material emissions and operational emissions of
weatherized homes

Aid in decision-making for weatherization scope
and material selections from a climate impact
perspective




Definitions, Studied
Conditions & Datasets

A “typical Vermont home”
approximately 2,200 square feet
two-story
three-bedroom
single-family residence

Datasets were used to establish baseline modeling assumptions
. HPWES was primary source of data

*  Assumptions were cross-referenced with the Vermont
Department of Public Service’s “Vermont Single-Family
Existing Homes Overall Report” to confirm as
reasonable




Definitions, Studied Conditions & Datasets

Scenarios
Baseline “Common Practice” “Carbon Smart” “Carbon Smart”
Equivalent-R
* Typical VT home, < Derived from * Replaced higher  “Carbon Smart”
unweatherized, 2020 study embodied carbon materials
the “do-nothing” e CcSPF (HFO) materials with lower *  Polyiso
scenario embodied carbon e DP cellulose
materlal§ «  No cavity
* Polyiso restrictions =
hd DP Ce”UIOse equ“/alent R

* Existing Cavity
restrictions / code
venting

A\

A\ A\
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Definitions, Studied Conditions & Datasets

Materials — “the type of insulation” Applications — “the physical space”
e Cellulose  Basement, below grade
e Poly-isocyanurate- rigid board  Basement rim joist
e Spray foam- closed cell (ccSPF [HFO])  Wood-framed wall
* w/ HFO blowing agent e Closed-cavity ceiling




Definitions, Studied Conditions & Datasets

Datasets -

Efficiency Vermont Home Performance
with ENERGY STAR® (HPWES) program data

e 2012-2016, installed measures
Vermont Department of Public Service’s

Vermont Single-Family Existing Homes
Overall Report

State of Wisconsin 2020 study “Assessment
of Energy and Cost Savings for Homes
Treated under Wisconsin’s Home Energy
Plus Weatherization Program,”

Dataset application

» Established baseline modeling assumptions
(available cavities, fenestration, areas, etc.)

> Cross-reference data source to confirm
calculated cavities and assumptions as
reasonable

» Energy model calibration




Definitions, Studied Conditions & Datasets

Scenarios

Condition

Baseline

Common Practice

Carbon Smart

Carbon Smart -

Equivalent-R

Foundation
(8” concrete)

2x10 Rim Joist

Wood framed Walls
(2x4, 16" o.c.),
no continuous insulation

Attic Framing
(2x8s @ 16” o.c.)

Air-infiltration
(ACH50)

R-3.5

R-5.8

R-6.75 nominal
R-8.77 effective

R-9.9 nominal
R-10.5 effective

12

R-19.8
(3” ccSPF)

R-19.8
(3” ccSPF)

R-19.8 nominal
R-13.5 effective
(3” ccSPF)

R-39.4 nominal
R-28.57 effective
(6” ccSPF)

8.4

R-19.6
(3” polyiso)

R-19.8
(5.5” DP cellulose w/ caulking)

R-12.46 nominal
R-11.49 effective
(3.5” DP cellulose w/ caulking)

R-18.7 nominal
R-17.86 effective

(5.25” DP cellulose, w/ caulking,

2” venting)

8.4

R-19.6
(3” polyiso)

R-19.8
(5.5” DP cellulose w/ caulking)

R-19.8 nominal
R-13.5 effective
(5.5” DP cellulose w/ caulking)

R-39.4 nominal

R-28.57 effective

(11” DP cellulose, w/ caulking,
2” venting)

8.4




Definitions, Studied Conditions

Material Example manufacturers / products GHG Impact?
& Datasets oo e St G T
1 1 Cellulose Cleanfiber, GreenFiber Lowest [ Best
Embodied Carbon — LCA stages included
Fiberglass CertainTeed Sustainable, Knauf EcoBatt Low
Paolyisocyanurate DuPorit Therrmax Low
2020 StU dy by B rlan J u St Of VE I C EPS (expanded polystyrene) Atlas, BASF Neopor Law
Embeodied carbon refers to the greenhouse gas (GHG) emissicons thatwent into the production of materials. A summary of Dp!r'l Cell. 5p|‘a3' fﬁam D’Emllﬂf APR Lapﬂllﬂ Fﬁam — Lﬂ'k 45‘0 Lﬁw
commeon insulation material_s appears in the table below. M_ateria!s th;t c?mainr;a;bt;rr';ndf:; reuou\re Ess:nwzr?: :::narprg:uce
I’f:ja;:);!ﬁ.}_owest [best) GHG impact At the other end, materials with high-GHG refrig ts tend to have the t carb: Phgnnhr_ fﬂa — Kinggpan Kml'[hgrm L
Material E Il f: { prod GHG Impact® | Notes . -
r— —— = o Mineral wool Rockwool, Owens Corning Medium
Celluiose Cleanfiber, GreenFiber Lowest/Best | Densepack, loossfll
Fiberglass CentainTeed Sustainable, Knauf EcoBatt Low Batts boardstock, looseflidensepack Closed cell spray foam, HEOD Dermnilec Heatlok HFO Pro, Lapedlia ProSeal HFO Medium
Polyisacyanurate DuPont Thermax Low Baardstack; Blowing agent: pentane
EPS fexpanded polysyrene) | Atlas, BASF Neopar Low Boardstock, Blowing agent: pentane Closed cell spray foam, HFC Demilec Heatlok XT, Dow Froth-Pak Highest / Worst
Open call spray foam Demiec AP, Lapolla Foam-Lok 450 Low Site- blown; Blowing agent water
ol ey "j:‘;"’"‘m = ::‘5‘“‘“ st %P5 (extruded polystyrene) Dow Styrofoam [Blueboard), Owens Coming (pinkboard] | Highest [ Worst
Closed cell spray foam, HFD | Demilec Heatiok HFO Pro, Lapolla PraSeal HFOD Medium Site-blown; Biowing agent HFOs
Closed cell spray foam, HFC | Demilec Heatiok XT, Dow Froth-Pak Highest 'Worst | Site- blown; Blowing agent HFCs
XPS (axtruded Dow Owens Coming (pinkboard) | Highest /Worst | Boardstock: Blowing agant: HFCs

Pariners have shared that many material substitutions are not only easy to implement. they can actually save money.
Furthermore, many lower-GHG materials are less toxic 1o workers and/or building cocupants®

Example: A 2-story, 2000 square foot home making insulation substitutions detailed below avoids approx. 55,000 kg CO.e, GWP avera e*
roughly equal to not driving 136,000 miles or not burning 60,000 pounds of coal. Provided the installed R-value is the same
and proper air sealing is done, there is no significant difference between the two homes’ operational energy. kg COze

R-value/ [A1-A3w / A5+B1]
inch

F
00 00 Board, foil-faced
m D ﬂ D Spray, closed-cell
SIEVA LTS GENERCE N M  hydrofluorocarbons

@ cHaimpact: High @ GHG impact: Low (HFC)
Spray, closed-cell

« EFS Type IX for sub-slab and polyisocyanurate
(interior) foundation
» Densepack cellulose in walls and cathadral ceiling

+ XPS for sub-slab and foundation
+ HFC-based spray foams in walls and cathedral ceiling

SIEVE LIS HENERGEL NN M  hydrofluoroolefins
(HFO)

s aralys e o Cole Gttt of resuroes ror e <art il v it procct v i Siliconized Acrylic
ot TSt 1 L o oot ey ogen AL £ i S Ve SRS o o Efﬁcmgy Air-sealing Caulkingl“l Sealant Y
ealan

Source: Just, “The high greenhouse gas price tag on residential building
materials: True life cycle costs (and what can be done about them).”

A1-A3, A5, B1 carbon
storage
A1-A3; A5, B1 not given

Al-A3, A5, B1

A1-A3, A5, B1

A1-A3



https://www.efficiencyvermont.com/Media/Default/docs/printable-resources/GeneralInfoForHomes/EVT-Home-Insulation-GHG-OnePager.pdf

Definitions, Studied Conditions & Datasets
Embodied Carbon — LCA stages included

FIGURE 1

Life cycle stages for
building products. Based
on EN 15978:2011 and ISO
21930:2017.

*Operational carbon stages
that are typically excluded
from life cycle assessments
focused on embodied
carbon.

Product Construction Use stage End-of-life
stage (Al-A3) stage (A4-A3) (BI-BT) stage (C1-C4)

of wasle

ing/dispos:

demolition

Deconstruction

Transporl to wasle
Wasle processing

Disposal

Process
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Manufacturing
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Source: Meghan Lewis, Monica Huang, Stephanie Carlisle, Kate Simonen, “AlA-CLF Embodied Carbon Toolkit for Architects, Part Il: Measuring
Embodied Carbon,” 2021. https://content.aia.org/sites/default/files/2021-10/21 10 STN DesignHealth 474805 Embodied Carbon Guide Part2.pdf



https://content.aia.org/sites/default/files/2021-10/21_10_STN_DesignHealth_474805_Embodied_Carbon_Guide_Part2.pdf

is weatherized using the most

1 Calculate the approximate when a
HPWES practices.




1 Calculate the approximate when a

is weatherized using the most
HPWES practices.
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RESEARCH TASK #1: Operational Savings
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Figure 2: First-year operational kg CO2e emissions—all measures



RESEARCH TASK #1: Operational Savings
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Figure 3: First-year operational kg CO,e savings compared to baseline condition—all measures



RESEARCH TASK #1: Operational Savings — by measure

1500 B Common Practice m Carbon Smart m Carbon Smart (Equivalent-R)

1,000

500

-500

kg CO,e (Fuel Oil)

-1,000
-1,500
Band joist insulation with Basement insulation with no Wall insulation with associated Ceiling insulation with
associated 17% air leakage air leakage reduction 8.3% air leakage reduction associated 4.7% air leakage
reduction reduction

Figure 4: First-year operational kg CO,e savings by measure compared to baseline condition



Calculate the carbon impact ( ) for the
of implementation when a typical Vermont home is weatherized:

e Using the most commonly adopted HPwWES practices (“ ”).

e Using low-carbon approaches with HPWES practices (“ ”).



Calculate the carbon impact (
) for the of implementation when a typical

Vermont home is weatherized:
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RESEARCH TASK #2: First Year emissions
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Figure 5: First-year kg CO2e emissions (operational and embodied)—all measures



RESEARCH TASK #2: First Year emissions — by measure
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Figure 6: First-year kg CO2e emissions (operational and embodied) by measure



for specific installed weatherization practices with the

3 Calculate the required to the up-front
estimated avoided:

* Using the most commonly adopted HPWES practices (“Common Practice”).

* Using low-carbon approaches with HPwWES practices (“Carbon Smart”).



Calculate the required to the up-front for
specific installed weatherization practices with the estimated
avoided:

ANNUAL ENERGY
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RESEARCH TASK #3: Time period to equalize embodied CO2e emissions

—e—Baseline Scenario —e=Common Practice —e—Carbon Smart —e—Carbon Smart (Equivalent-R)
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Figure 7: kg CO2e emissions (operational and embodied) over time — all measures



RESEARCH TASK #3: Conclusions

—e—Baseline Scenario —e=Common Practice —=e—=Carbon Smart =e—Carbon Smart (Equivalent-R)
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Figure 7: kg CO2e emissions (operational and embodied) over time — all measures



RESEARCH TASK #3: Conclusions
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RESEARCH TASK #3: Conclusions

—e—Baseline Scenario —e=Common Practice —=e—=Carbon Smart =e—Carbon Smart (Equivalent-R)
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Figure 7: kg CO2e emissions (operational and embodied) over time — all measures



RESEARCH TASK #3: Conclusions

—e—Baseline Scenario —e=Common Practice —=e—=Carbon Smart =e—Carbon Smart (Equivalent-R)
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impact indefinitely
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Figure 7: kg CO2e emissions (operational and embodied) over time — all measures



RESEARCH TASK #3: Conclusions
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RESEARCH TASK #3: Conclusions
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Figure 7: kg CO2e emissions (operational and embodied) over time — all measures



RESEARCH TASK #3: Conclusions

—e—Baseline Scenario —e=Common Practice —=e—=Carbon Smart =e—Carbon Smart (Equivalent-R)
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RESEARCH TASK #3: Conclusions
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RESEARCH TASK #3: Conclusions
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“Common Practice” and “Carbon
Conclusions Smart” strategies offers a

Weatherizing 36 homes =

saved emissions of 1 million pounds of
coal

when compared to the Baseline Scenario.

Source: EPA GHG Equivalency Calculator,



https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

“Common Practice” and “Carbon
Conclusions Smart” strategies offers a

Weatherizing 36 homes =

when compared to the Baseline.

Nearly 8x‘annually

or

Nearly 200,000 miles annually



https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

“Carbon Smart” strategy offers a
Conclusions

when compared to the Baseline.
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Figure 5: First-year kg CO2e emissions (operational and embodied)—all measures




“Carbon Smart” (Equivalent-R) is

Conclusions

notwithstanding constraints of existing assemblies.

Weatherizing 27 homes =

saved emissions of 1 million pounds of
coal

o)
()

Source: EPA GHG Equivalency Calculator,



https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

“Carbon Smart” (Equivalent-R) is
Conclusions

notwithstanding constraints of existing assemblies.

Weatherizing 27 homes =
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Nearly 8x anndally

or

Nearly 200,000 miles annually
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“Carbon Smart” (Equivalent-R) is
Conclusions

notwithstanding constraints of existing assemblies.
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Figure 5: First-year kg CO2e emissions (operational and embodied)—all measures




Conclusions
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Figure 5: First-year kg CO2e emissions (operational and embodied)—all measures

reductions
are when
considered with the embodied
carbon emissions avoided due to
building reuse.

It is that we

possible to avoid
irreversible climate change.
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