ENERGY BOSTON

How Passive Buildings Support
Resiliency & Grid Flexibility

Lisa White (PHIUS)

Curated by Heather Iworsky (ReVision Energy) and
Mark Schow (Elevated Design)

Northeast Sustainable Energy Association (NESEA)
March 1, 2022




How Passive Buildings Support
Grid Flexibility & Resiliency

Lisa White | Phius
March 1, 2022




Buildings can be part of the
solution.



@ What is Passive Building?

Typical Building Passive Building
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The Transition to a Renewable Future

Requires Systems Level Thinking

How do the decisions at this scale... Impact the decisions at this scale?
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A bit of Background on
Grid-Electricity



“The biggest machine on earth”
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CURRENT ELECTRIC GRID INFRASTRUCTURE




GENERATION RESOURCES

U.S. electricity generation by source, all sectors
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SEASONAL LOAD PROFILES ON GRID

General daily patterns / grid loads are predictable, variability is mostly based on space conditioning loads.

“Peaking Load” Power WINTER Power SUMMER

Natural gas “peaker plants” YEwE demand
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“Load Following”
Naturalgas CC
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base load base load
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Coal
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“Baseload power is mostly
constrained to a constant output



Electricity Generation Sector — Load Duration Curve

% Total Capacity Requirement - The U.S. currently has about 2.5x
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E E used annually.
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Image Source: Mark Pruitt
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@ Meeting the Electric Load
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Electricity Generation Sector - Scheduling
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New England ISO - February 24, 2020
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THE GRID IS CHANGING

DECENTRALIZATION

Makes customers active
elements of the system, though
requires significant coordination

r Il I I B B S .
| Key technologies: I

energy efficiency, |
| solar PV, distributed |
| storage, microgrids,

demand response, l
N 8 N N B B |

ELECTRIFICATION

Critical to long-term carbon
goals and will be a relevant
distributed resource

Key technologies:
Electric vehicles,
vehicle to grid/home,
smart charging, heat

pumps

Key technologies:
Network technologies

(smart metering, remote
control and automation

systems, smart sensrs)

DIGITALIZATION
and beyond the meter

Allows for open, real-time, (optimization and
automated communication and aggregation platforms,

operation of the system smart appliances and
devices, IoT)

© Passive House Institute US




California ISO (CAISO) - February 24, 2020
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California ISO (CAISO) - February 24, 2020
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CalifornialSO (CAISO) - February 24, 2020

= 02/24/2020 ~ Net demand trend Data ~
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@ THE GRID IS CHANGING

Electrifying heating systems in
buildings will shift the grid
peak to the winter.

Dispatchable fossil fueled
generationresources are
being replaced with variable
renewable energy resources.

The grid is digitalizing,
allowing buildings to respond
to grid signals and support
more variable resources.

The total load is increasing
from electrification of
buildings and cars.

© Phius




@ THE GRID IS CHANGING

Electrifying heating systems

in buildings will shift the grid
peak to the winter.

Dispatchable fossil fueled
generationresources are
being replaced with variable
renewable energy resources.

The grid is digitalizing,
allowing buildings to respond
to grid signals and support
more variable resources.

The total load s increasing
from electrification of
buildings and cars.
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@ THE PEAK IS CHANGING: WINTER IS COMING

Electrifying heating systems in buildings will shift the grid peak to
the winter.

Winter Day Load Winter Day Load
Typical New Building Passive Building

4

Midnight 2 Midnight Midnight =2 Midnight




@ 3 Typical Building Winter Peaks

Winter Day Load — with coincident peaks 12 ““m """"""

Building 1 Building 2 Building 3 Grid Load




@ 3 Passive Building Winter Peaks

Winter Day Load — with coincident peaks

Building 1 Building 2 Building 3 Grid Load




@ 3 Passive Building Winter Peaks

Winter Day Load — with load shifting

Passive building enclosure acting as thermal storage.

Building 1 Building 2 Building 3 Grid Load
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@ Why this matters

Passive building reduced winter peak load by a factor of 3.

This peak determines the grid capacity needed.

If you consider planned redundancy, 3x reduction in peak is more like a factorof 6 to /.
Grid capacity needed is directly correlated with the cost of transition to renewable
energy grid.

Peaks are often met with the most expensive and high
carbon-emission generation resources.

And likely will continue to during the transition to a renewable energy grid, due to their
responsiveness and compatibility with intermittent generation sources.

© Phius



CASE STUDY PROTOTYPE - PEAK SHAVING

Single Family building

Location: Minneapolis, MN

5 occupants, ~1,800 sf

All Electric — Elec resistance heating only
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Hourly Daily Monthly Heatmap Profile Statistics PDF / CDF Duration curve Scatter
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Hourly Daily Monthly Heatmap Profile Statistics PDF/CDF Duration curve Scatter
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@ THE GRID IS CHANGING

Electrifying heating systems in The gridis digitalizing,
buildings will shift the grid allowing buildings to respond
peak to the winter. to grid signals and support

more variable resources.

Dispatchable fossil fueled

generation resources are The total load s increasing
being replaced with variable from electrification of
renewable energy resources. buildings and cars.
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CHALLENGES OF RENEWABLE ENERGY INTEGRATION

Customer uses grid to
export excess power
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BASELOAD CHALLENGES

3. Daily wind/solar curtailment energy in MWh on a 7-day basis. - 9/22/2019
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GRID IMPACT - ‘NET ZERO’ CASE STUDY PROTOTYPE

Multifamily Building — DOE Prototype
Location: Chicago, IL

32 units, 96 occupants, ~35,000 sf iICFA
All Electric

Two ‘Net Zero’ buildings studied:

1. Baseline “Renewable Oriented” (code compliant):
290 kW PV Array
All south facing, 10 degree tilt

2. Passive building (Phius certifiable):
159 kW PV Array
All south facing, 10 degree tilt



Baseline building

Yearly Profile: Building Load vs Renewable Energy Production
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Daily Loads & PV Production

[ ]
Winter & Summer
January 15 - Daily Profile January 15 - Daily Profile
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@ In Reality...

“Net Zero” %g “Zero Impact”

Only about ~35% coincident production-and-use of on-site PV.
The grid must cover the rest.

Reducing the annual load reduces dependency on the grid to cover the
remaining load.

The marginal emissions at the time of renewable energy production may be
different than when the building is using grid energy.

© Phius



@ Net Load on Grid/Ramping Analysis

Community Scale - 1000 Multifamily Buildings

March 31: Net Load with Varying %’s of NZE Case Study Buildings
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@ THE GRID IS CHANGING

Electrifying heating systems in The grid is digitalizing,
buildings will shift the grid allowing buildings to respond
peak to the winter. to grid signals and support

more variable resources.

Dispatchable fossil fueled

generation resources are The total load s increasing
being replaced with variable from electrification of
renewable energy resources. buildings and cars.
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@ Load Shedding & Shifting

Utilizing the thermal storage capabilities of passive buildings.

Load Shed Load Shift

e,
= £
57 -
£ 2
.
b

Power Demand
Power Demand

Hour of the Day Hour of the Day
Reduce energy use at peaks / Focus to on when buildings are
times of high grid stress based consuming energy as opposed to
on grid signals. how much energy is being
consumed.

© Phius



DEMAND RESPONSE LOAD SHED SIMULATION

Summer & Winter | Chicago, IL

Single SW corner unit of study building,
complies with PHIUS+ 2018 standard.

Four Scenarios Evaluated:
e 20% WWR - Low Mass
e 60% WWR - Low Mass
« 20% WWR - High Mass
« 60% WWR - High Mass

Removed all space heating capacity
February 1-15, 8am-2pm

Removed all cooling & dehumidification
July 14-21, 3pm - 8pm
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DEMAND RESPONSE LOAD SHED
NO COOLING/DEHUM FOR A WEEK IN JULY
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@ THE GRID IS CHANGING

Electrifying heating systems in
buildings will shift the grid
peak to the winter.

Dispatchable fossil fueled
generationresources are
being replaced with variable
renewable energy resources.

The grid is digitalizing,
allowing buildings to respond
to grid signals and support
more variable resources.

The total load is increasing

from electrification of
buildings and cars.
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...50 the electric load is
increasing while we are trying
to clean it up.

© Phius



A breakdown of the major power plants in

the United States, by type

© Phius

United States - Annual Average Wind Speed at 80 m

Source: Wind resource estimates developed by AWS Truepower,
LLC for Web: http com |
hitp/Avww.awstruepower.com Spatial resolution of wind resource
data: 25 km Projection’ Albers Equal Area WGS84.
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Concentrating Solar Resource of the United States
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Lots of Future Investmentin Transmission & Distribution
To get theresource to the load

And the “more” the
lines need to carry,
the more investment
is needed.

Lower peaks, and lower
annual energy use reduces
the required investment in

updating T&D.



The Opportunity - PhiusGEB @
Phius ZERO + GEB

Typical Commercial Energy Efficient Energy Efficient Grid-interactive
Building Building Building with Building with
Solar PV Energy Efficiency,

Solar PV, and
Load Flexibility

Energy Demand (kW)

noon noon noon

Image Source: RMI/GSA
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Resilience & Passive
Survivability



The All-Electric F-150 Lightning: Turning Electric Into Lightning | Ford o 0 »
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The All-Electric F-150 Lightning: Turning Electric Into Lightning | Ford o 0 »
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The All-Electric F-150 Lightning: Turning Electric Into Lightning | Ford O O »

& A
Pro Power
Onboard

&
Off Road Transferring Power

About 3700

Pl Stop BTU/hr...
Parking

‘ Power Transfer: 1.10f9.6 kw @

[‘1

When home is properly equipped and home transr? ﬂltCh disconnects the home from the grid. Based on 30 kWh use per day using th?tllﬁ@mh the long range battery. .
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The All-Electric F-150 Lightning: Turning Electric Into Lightning | Ford

AVAILABLE
INTELLIGENT
BACKUP POWER
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When home is properly equipped and home transfer switch disconnects the home from the gnit Based on 30 kWh use per day using the F-150 with the long range battery.
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HOUSE ' Phius Certified Project
FEATURE A A Austin, TX | ~1400 sf

60°F after one day
53°F after after the 2
-10°F outside

While not “comfortable”, no

risk of pipes freezing.

“The house next to ours was identical
to what ours was before our Passive
_ Al House remodel,” says Trey Farmer,
bl Chitect and principal of Forge Craft

How A Texas Passive House Survived Architecture + Design in Austin, Texas.

“After 12 hours without power, it was
the 2021 Deep Ireeze below freezing inside in the home

”
next door.
Stacey Freed, Rise Writer
R Mar 15, 2021 - ® 9 min read




Many places left without
power for > 5 days

© Phius



Passive
Survivability

A building’s ability to maintain
livable conditions when sources such
as electricity, water, or heating fuel
are cut off.

- Alex Wilson, 2005

President, Resilient Design Institute



Metrics for Passive Survivability

ASHRAE’s Thermal Environmental Conditions for Human
Occupancy Standard 55-2004

Indoor Summer Comfort Range: 74°F — 83°F
Indoor Winter Comfort Range: 6/°F — 79°F
Acceptable for naturally ventilated spaces: 50°F — 93°F

Homeothermy: Form of temperature regulation used by
humans, where the body maintains the same internal core
temperature (98.6°F), regardless of external influences.

© Phius



Metrics for Passive Survivability

HYPOTHERMY ZONE OF HOMEOTHERMY HYPERTHERMY
Core body ZONE OF
temperature THERMONEUTRALITY
estimates shown CORE TEMPERATURE
below. /
This can vary ZONE OF
significantly from v
person to HE A
erson Ropy,
p ' I()'\
D C B A A Bl € D’
C()Ll)‘ ENVIRONMENTAL VARIABLES ’ HOT
After Lacetra et al, 2003
[ ]
T |~80°F ~o50F ~98°F ~100°F ~108°F
B |-222 s0°F 67-83°F 0PF  ~?77 |

Picture Courtesy of Holmes, S, et al. Overheating and passive habitability: indoor health and heat indices.




Assessment Overview & Variables

1) Window to wall ratio
20%
60%
2) Building Performance Standards

ASHRAE 90.1-2013
PHIUS+ 2015

3) Construction Types / Thermal Mass

Low Mass (Wood-framed)
High Mass (concrete/insulated concrete forms)

4) Orientation of units

Southwest
Northeast

© Phius



OUTAGE SIMULATION SETUP

e 32 dynamic simulations

e Simulate power outage
during 5-day resilience
design week in Chicago, IL

Cover all combinations of:
-8 bU|Id|ngs (mass & performance)
- 2 dwelling unit orientations
- 2 seasons




WINTER RESILIENCE RESULTS

% of Hours in Simulation Above Threshold Temperature

Const. | Orient Avg. | Min.
Case |Season Toyr:e a:z: Standard| WWR % | ' © M1 565°F | 560°F | >55°F | >50°F | >45°F |< 40°F|< 35°F|< 30°F| >25°F | 20°F | >15°F | >10°F
1 = smius |20 3% | 14% | 21% | 32% | 42% | 53% | 68% | 97% | 100% | 100% | 100% | 100%
2 O | g\ 60 13% | 27% | 41% | 47% | 61% | 78% | 97% | 100% | 100% | 100% | 100% | 100%
3 £ 20 0% | 3% | 7% | 15% | 19% | 23% | 36% | 42% | 54% | 91% | 100% | 100%
ASHRAE
4 S 60 0% | 1% | 6% | 12% | 17% | 20% | 27% | 38% | 41% | 61% | 98% | 100%
5 5 oHius |20 3% | 8% | 16% | 22% | 33% | 42% | 55% | 81% | 100% | 100% | 100% | 100%
6 S NE 60 3% | 5% | 13% | 18% | 22% | 33% | 39% | 47% | 83% | 100% | 100% | 100%
75| = ASHRAE |20 2% | 5% | 8% | 13% | 18% | 22% | 28% | 38% | 45% | 79% | 100% 100%
s | ¥ 60 2% | 3% | 4% | 6% | 8% | 13% | 16% | 18% | 22% | 36%| 60% | 100%
9 | = oHius |20 12% | 37% | 62% | 95% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
0] = b SW 60 11% | 39% | 59% | 83% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
11 S AsHRAE |20 3% | 16% | 27% | 42% | 61% | 84% | 100% | 100% | 100% | 100% | 100% | 100%
12 s 60 2% | 10% | 18% | 29% | 39% | 48% | 68% | 93% | 100% | 100% | 100% | 100%
13 S omivs |20 7% | 28% | 53% | 85% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
14 S | NE 60 3% | 19% | 38% | 60% | 93% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
15 O AsHRAE |20 3% | 13% | 23% | 38% | 55% | 79% | 100%]100% 100% | 100% | 100% | 100%
16 60 2% | 6% | 14% | 20% | 33% | 40% | 56% 100% | 100% | 100% | 100%
(o)
<50% =red
Percentage of hours above threshold 50-00°
_— fo) —
(o]
temperature shown across the top ~90% = green
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WINTER RESILIENCE RESULTS

Decrease in interior temperature after 1 hour, 4 hours, and 12 hours

Case # 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16
Season Winter
Construction Type Wood framed Concrete/ICF
Orientation SW NE SW NE

Standard PHIUS ASHRAE PHIUS ASHRAE PHIUS ASHRAE PHIUS ASHRAE

WWR (%) 20 | 60 | 20 | 60 | 20 | 60 | 20 20 | 60 | 20 | 60 | 20 | 60 | 20 | 60

°F dropped in 1 hour 1.8 | 23 | 1.7 | 2.7 | 1.8 | 2.8 | 3.1 1.3 (18 |25 |42 | 13|18 | 25 | 4.2
°F droppedin4d hours | 4.4 | 53 | 5.7 | 9.1 | 44 | 6.8 23 (132 |42 |71 |23 |32 |42 | 7.1
°F droppedin12hours | 6.9 | 1.0 |10.5| 7.6 | 9.1 27 | 11162 |77 |36|42)| 7.1]| 10.9
Temp (°F)at 1AM Day 1 | 66.2 | 65.8 | 63.2 66.2 | 65.2 | 64.9 66.7 | 66.2 | 65.5 [63.8 | 66.7 | 66.2 | 65.5 | 63.8
Temp (°F)at4 AM Day1 | 63.6 | 62.7 [ 59.2 63.6 | 61.2 | 60.5 65.8 | 64.8 | 63.8 |60.9 | 65.8 | 64.8 | 63.8 | 60.9
Temp (°F) at NoonDay 1 | 61.1 | 67.0 | 54.4 | 54.9 | 58.9 ‘ 65.3 (66.9 (61.860.3164.4]63.860.9|57.1
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WINTER RESILIENCE RESULTS

Interior Temperatures During 5-Day Winter Outage

80°
70° .
0 Dotted Lines =

More Windows

60°
Gray/Black Lines =

50° )
High Mass

40° )
Teal/Blue Lines =
Low Mass

30°

20°

10°

1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17

SW, PHIUS, 20%, WF SW, PHIUS, 60%, WF ——SW, ASHRAE, 20%, WF -+« SW, ASHRAE, 60%, WF
——NE, PHIUS, 20%, WF --=- NE, PHIUS, 60%, WF ——NE, ASHRAE, 20% ,WF ---« NE, ASHRAE, 60%, WF
SW, PHIUS, 20%, CC SW, PHIUS, 60%, CC ——SW, ASHRAE, 20%, CC -+« SW, ASHRAE, 60%, CC

NE, PHIUS, 20%, CC NE, PHIUS, 60%, CC —NE, ASHRAE, 20%, CC «+++ NE, ASHRAE, 60%, CC
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WINTER RESILIENCE RESULTS

195 kW array, instantaneous PV output used for ventilation & electric resistance
space heating during outage

Southwest, Wood Framed, PHIUS, PV for Elec Heater
80°
70°
60°
50°
40°
30°
20°
10°
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1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19

—SW, PHIUS, 20%, WF SW, PHIUS, 20%, WF_PV ===S5W, PHIUS, 60%, WF ===5W, PHIUS, 60%, WF_PV
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SUMMER RESILIENCE RESULTS

% of Hours in Simulation Below Threshold Temperature
Const. | Orient Avg. Max.

Case |Season Toyr;e a:?r: Standard | WWR %| _ " © | <80°F | <85°F | <90°F | <95°F | <100°F | <105°F | <110°F | <115°F
17 PHIUS 20 59% 59% 70% 100% 100% 100% 100% 100%
18 8 SW 60 59% 59% 59% 59% 76% 88% 98% 100%
19 & ASHRAE 20 60% 60% 83% 100% 100% 100% 100% 100%
20 g 60 60% 60% 66% 80% 92% 100% 100% 100%
21 o PHIUS 20 59% 59% 81% 100% 100% 100% 100% 100%
22 8 NE 60 59% 59% 59% 69% 87% 100% 100% 100%
23 CIL) ; ASHRAE 20 59% 59% 93% 100% 100% 100% 100% 100%
24 & 60 59% 59% 72% 88% 100% 100% 100% 100%
25 & 20 59% 100% 100% 100% 100% 100% 100% 100%
26 (/3’ b SW PRIUS 60 59% 59% 80% 100% 100% 100% 100% 100%
27 S ASHRAE 20 59% 92% 100% 100% 100% 100% 100% 100%
28 % 60 59% 59% 83% 100% 100% 100% 100% 100%
29 o PHIUS 20 59% 100% 100% 100% 100% 100% 100% 100%
30 CC) NE 60 59% 60% 90% 100% 100% 100% 100% 100%
31 O ASHRAE 20 59% 100% 100% 100% 100% 100% 100% 100%
32 60 59% 65% 100% 100% 100% 100% 100% 100%

Picture Courtesy of Lisa White

<50% =red
50-90% =
>90% = green

Percentage of hours below threshold
temperature shown across the top
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SUMMER RESILIENCE RESULTS

Interior Temperatures During 5-Day Summer Outage
115°
110°
Dotted Lines =
1057 More Windows
100°
- Gray/Black Lines =
High Mass
90°
g5 Teal/Blue Lines =
Low Mass
80°
75°
70°
8/1 8/2 8/3 8/4 8/5 8/6 8/7 8/8 8/9 8/10
—SW, PHIUS, 20%, WF  ----SW, PHIUS, 60%, WF  —SW, ASHRAE, 20%, WF ----SW, ASHRAE, 60%, WF
—NE, PHIUS 20% WF  ----NE, PHIUS, 60%, WF —NE, ASHRAE, 20%, WF ----NE, ASHRAE, 60%, WF
SW, PHIUS, 20%, CC SW, PHIUS, 60%, CC —SW, ASHRAE, 20%, CC ----SW, ASHRAE, 60%, CC
—NE, PHIUS, 20%, CC -««-NE, PHIUS, 60%, CC —NE, ASHRAE, 20%, CC  ----NE, ASHRAE, 60%, CC
—_—

Picture Courtesy of Lisa White
© Phius



Phius REVIVE Pilot Framework

REVIVE = Phius’ existing retrofit program
REVIVE Pilot = Retrofit program in development

New Framework: Enclosure upgrades justified based on resilience
(rather than cost optimization, how the existing program is framed)

- Winter = Limiting number of degree hours below 54°F to 216,in a /-
day simulation (somewhat aligned with LEED pilot credit)
- Limiting number of hours below 35F to O for equipment

—->Summer = Using Heat Index (combo of temperature and Relative
Humidity) and Mora et. Al “deadly days”. Thresholds not
determined.
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Thanks!
Questions?

Lisa White

Associate Director | Phius

Lwhite@phius.org
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