

Thermal Energy Networks: An Overview and Project Examples

Sue Dougherty August 31, 2022 *"In order to decarbonize the State's building stock by mid-century, New York will have to quickly move beyond a building-by-building approach to a neighborhood-by-neighborhood approach, developing carbon neutral communities."*

NYSERDA Strategic Outlook (2022-2025)

Success would mean:

- > Develop and maintain new clean energy infrastructure
- > Establishing a transition strategy for utilities to shift to being clean thermal energy providers as we downsize gas systems
- > Leverage unique position of municipalities and utilities to scale business models in partnership with existing market players
- > Create new clean, high-paying energy jobs in construction and maintenance of loop systems
- > Provide lower operating cost to residents and businesses with less strain on the electric grid during peak times

What's a district-style configuration?

Individual-Building-style

District-style: Neighboring buildings are linked via connector pipes to share thermal resources.

When to consider a district-style approach

- > Group of buildings with a variety of heating and cooling loads
 - Mixed use developments
 - Healthcare facilities
 - College campuses
 - Residential complexes
 - Downtown core with office, commercial, residential buildings
- > Proximity to a viable thermal resource
 - Land space for boreholes / ground coupling
 - Water pipes or sewer mains
 - Waste heat from industrial facility or datacenter
 - Surface water: rivers, lakes, ponds

NYSERDA support (PON 4614)

Purpose

> Funding support for project sites to determine feasibility of a district-style heat pump approach, perform a detailed design, and construct a system

Eligibility

- > Project sites with 2 or more buildings and a combined conditioned space of at least 40,000 sqft or 10 or more buildings of any size
- > System Benefits Charge (SBC) payers and non-SBC payers, including affordable housing, State/City agency buildings, and sites on Long Island
- Preference for supporting Disadvantaged Communities (DACs), Environmental Justice Communities (EJCs), Low-to-Moderate Income (LMI) customers
- > Upcoming due dates to competitive solicitation:

Round #	8	9	10	11	12
Proposal Due Date	11/15/2022	2/8/2023	5/10/2023	8/9/2023	11/15/2023

NYSERDA

PON 4614 funding categories

Category A "Scoping Study" Assess feasibility of numerous options (small, medium, large; technology X, Y, Z) The "What" Question Output is a preferred option

Max award:\$100K

Category B "Detailed Design Study" Drill-down on preferred option

(create blueprints, obtain bid prices) The "How" Question Output is a shovel-ready project

Maxaward: \$500K

Category C "Construction"

Max award: \$4M

PON 4614 projects

- Round #1-5 projects
- 39 project sites
- Project factsheets / summaries on website

Portfolio with Variety of Learning Opportunities

Multiple Owners	CONSTRUCTION • Two nodes at non-abutting redevelopment zones: City of Troy EASIBILITE • Entire city: City of Oneonta • Central core downtown: City of Syracuse • A few adjacent blocks with low-rise buildings: City of Utica • A handful of single family homes in conjunction with a nearby commercial building: Northland Community in Buffalo • Rochester District Heating Cooperative • Existing and new buildings at SUNY Oneonta owned by DASNY and SUNY • Cluster of residential and commercial buildings in downtown Albany: Sheridan Hollow • Office buildings in lower Manhattan using Hudson River for thermal resource: Brookfield Place • Cluster of residential, office, and retail buildings in Ithaca • Mix of buildings in Southeast Albany using Hudson River for thermal resource • Cluster of single family homes in Ithaca	FEASIBILITY • A few adjacent blocks with low-rise buildings and high-rise towers: Innovation Queens • Redevelopment of industrial buildings at Oneonta Railyards • Large cluster of residential buildings using surface water in Long Island City
Single Owner	 DESIGN Campus lacking district thermal: The Children's Village in Dobbs Ferry FEASIBILITY Campus with existing district steam: Rockefeller Center Campus with some existing district steam and some thermally-islanded buildings: Barnard College in Manhattan Campus with existing district steam in midst of conversion to hot water: University of Rochester Campus lacking district thermal: Phelps Hospital in Sleepy Hollow Campus looking at pilot (subset of buildings): Syracuse University, Wagner College in Staten Island Campus looking to leverage MTA pumped water: Spring Creek Towers (formerly known as Starrett City) in Brooklyn Campus looking to leverage surface water body as thermal resource: Masonic Temple in New Rochelle Campus with existing steam: SUNY Oswego Campus with mix of existing systems including steam and WSHPs: Houghton College Campus in Niskayuna 	CONSTRUCTION • New mixed-use buildings: Greenpoint, Brooklyn development • New affordable housing, mixed-used: LCOR Coney Island DESIGN • New construction on campus with residential and office buildings: Watchtower Bible and Tract Society • New mixed-use buildings in Harlem • Gut rehab mixed-use buildings repurposing large industrial tanks for thermal storage in Syracuse EEASIBILITY • New construction mixed-use buildings looking to leverage surface water body as thermal resource: Pratt Landing in New Rochelle • New construction mixed-use buildings looking to leverage hybrid (ground source, air source, wastewater) as thermal resource: Gowanus Green in Brooklyn, The Peninsula in The Bronx, Fleet Financial in Queens • Gut rehab mixed-use buildings looking to leverage surface water body as thermal resource: Silo City in Buffalo • New construction using Flushing Bay as thermal resource: Willets Point in Queens
Existing		New Construction/Gut Rehab

Next steps

- > Share results of PON 4614 Scoping Studies
- > Continue outreach to municipalities, campus-owners, and affordable housing
- > Utility Thermal Energy Networks and Jobs Act signed on 7/5/22
 - Work with utilities to identify pilot opportunities, define ownership models
- > Attending the NESEA BuildingEnergy NYC conference on 9/15?
 - Session: Breaking Ground on Geothermal and Thermal Energy Networks: A Pathway for Urban Areas

Thank You

Sue Dougherty sue.dougherty@nyserda.ny.gov 518-862-1090 x3127

1515 SURF AVENUE

Near Coney Island waterfront 463 Unit Multi-Family Housing 139 Affordable Units 11,000 ft² Ground Floor Retail

Developer	LCOR
Architect	Studio
MEP Engineer	MGE Er
Geothermal Design Builder	Ecosav

LCOR Studio V Architecture MGE Engineering Ecosave

- Elimination of 12,000 MBH of fossil fuel boilers for heating and domestic hot water
- Eliminated 800 Ton cooling tower for water source heat pump system
- Elimination of gas fired pool heater
- 60% + Energy savings versus base ASHRAE 90.1 2016 design for multi-family housing
- All Electric New Construction Multi-family Facility

NYSERDA Award under Category C – Construction - \$1,621,019

Raymond Johnson PE Executive VP Engineering & Construction

Largest Geothermal Heat Pump Project in NYC – All Electric HVAC

- Extended range horizontal and vertical water source heat pumps
- CO₂ heat pump DHW heating system
- Dedicated heat pump DOAS system with heat recovery wheels
- Swimming pool serves as a heat sink providing free heat
- Construction commenced September 2021
- Anticipated project completion Spring 2024

Geothermal Closed Vertical Loop Drilling

- Cooling Dominant Multi-family Housing Complex
- Total 153 well borefield with 20 feet spacing
- ▶ 500 feet vertical borefield depth
- Construction below foundation of housing complex

ADVANTAGES OF COMMUNITY GEOTHERMAL HEAT PUMP LOOPS

- Geothermal Heat Pump Loops provide highest HVAC system Efficiencies and Lowest Operations and Maintenance Cost
- Premium HVAC technology for electrification and net zero emissions
- Community GHP loops provide scale to reduce installation cost
- Buildings with diverse heating and cooling load profile provide diversity to balance, optimize and downsize borefield sizing
- Provides fuel diversity and reduces summer electric peak
- DHW Heat pumps in multi-family buildings enables balancing and reducing borefield sizing in cooling dominant buildings
- ► GHP district loop can free up prime real estate inside building and on roof
- ► Quieter operation and more reliable system with highest efficiencies

DESIGN & IMPLEMENTATION CHALLENGES

ECOSAVE YOUR NET ZERO PARTNER

Constrained footprint

- Borefield below buildings and garage
- Loops and manifolds between concrete foundation elements.
- Project Scheduling critical
- Surveying critical
 - Ensure drilling is done in correct locations
 - Maintain required separation from foundation elements

DESIGN & IMPLEMENTATION CHALLENGES

Winter Drilling

- Drilling and looping equipment freeze protection
- Freeze protection of installation

ECOSAVE

YOUR NET ZERO PARTNER

Inconsistent Geology

- Requires adaptation in drilling techniques and materials
- Drilling fluid and protective casing.
- Drilling bits

PROJECT STATUS

Work Progress June to August 2022

- Fusing of 8-inch pipes
- Building construction progress above loops
- Pressurizing of geothermal loops
- Backfilling after installing loops

LESSONS LEARNED

- New construction easier to adopt than retrofit existing system
- Accurate load modelling of building and bore-field for geothermal loop
- Optimal facility have load diversity
- Facilities who consider life time operations & maintenance in lieu of first cost
- Facilities located in States where state legislation and local laws drive decarbonization efforts
- Facilities which have corporate ESG, carbon/emission reduction goals and want clean energy solutions
- District loops with diverse building heating and cooling loads are ideal for optimizing loop sizing

THANK YOU

Raymond Johnson PE Executive VP Engineering & Construction rjohnson@ecosaveinc.com

NYSERDA PON 4614

Overview of progress to date

endurant 🗾

Tony Amis

SVP

August 31st, 2022

Endurant Energy Status of PON 4614 works

8 projects In progress

- 6 projects completed to Final Report status
- 2 remaining projects with analysis completed being drafted into final reports
- Projects included
 - Retrofit of existing buildings
 - Multi-family buildings
 - Affordable Housing
 - University campus conversion

Geo solutions explored have included:

- 500' boreholes
- Energy piles
- Sewage Heat transfer
- Heat exchange using pumped water from MTA
- Most combined with ASHP's

METHODOLOGY & APPROACH TO PON 4614

endurant 差

Develop & Understand Project scope

Developing a district energy concept

- Quantify the following costs and benefits against business-as-usual
 - Capital cost
 - Utility cost
 - Maintenance cost
 - Carbon emissions
 - Regulatory requirements
 - Additional value streams
- Thermal technologies considered:
 - o Ground source heat pump
 - Air source heat pump
 - Wastewater heat exchange
 - Surface water exchange
- Additional technologies considered:
 - o Solar PV
 - Battery Energy Storage
 - EV Charging

ESTABLISHING THE BASELINE

endurant 🗾

Modelling approach

- Space by space model using IES VE 2019 energy modelling software
- Generating Energy Models for each block in the development
- 8760 model of heating, cooling, and domestic hot water (DHW) demand for each building

Modelling results

Zero-carbon geo-exchange systems provide base-load heating & cooling

- Heat exchanger: plastic piping through
 which heat transfer fluid circulates
- Heat pump: mechanical equipment to accept or reject heat to/from the transfer fluid
- **Distribution system**: Moves energy from the heat pump to/from the building by circulating warmed or cooled air or water

Extraction

Well

Decentralized plant

Pros:

- 2-pipe condenser loop distribution:
 - Reduced investment cost for site trenching and lateral piping
 - Reduced investment cost at building level
- Flexibility at building level:
 - Utilize 2-pipe distribution to spaces
 - Supplemental assets can be localized (ASHP)

Cons:

- Less opportunity for "true" simultaneous load
- Larger investment in equipment:
 - Less opportunity for economies of scale
 - Redundancy/resiliency requirements localized
- Increased potential for maintenance (more compressors)

Central plant

Pros:

- Economies of scale on plant equipment
- More efficient dispatch of plant assets
- Reduced maintenance (fewer compressors to service)
- o Greatest opportunity for simultaneous load

Cons:

- Requires greater existing space allocation or new building
- 4-pipe distribution:
 - Increased investment cost for site trenching and lateral piping
 - o Increased investment cost at building level
- Increased opportunity for thermal losses in distribution

MECHANICAL EQUIPMENT CONCEPTS

endurant 🚝

Equipment dispatch strategy - energy pile solution

Endurant Energy Status of PON 4614 works

Key findings reported when using ground sourced heat pump solutions

Business as Usual (Gas fired Boilers & variable refrigerant flow(VRF) cooling)

- Electrical usage increases moderately when displacing Gas in new build
- 31% CO2 Savings
- 44% OPEX Savings based on 30year lifecycle cost

Business as Usual (All electric building)

- Electrical usage dropped between 44 and 50% when using GSHP compared to all VRF(ASHP)
- 47-53% CO2 Savings
- 30 53% OPEX Savings based on 30year lifecycle cost

Business as Usual (retrofit and steam)

- Electrical usage increased substantially on renovation of existing buildings in one case by 1430%
- Up to 70% CO2 Savings
- 43% OPEX Savings based on 30year lifecycle cost

Endurant Energy Status of PON 4614 works

Key findings – Feedback from Developers

Despite studies demonstrating significant advantages of ground source heat pump solutions

- Clean heat Incentives play a key role in making solutions economically viable
- VRF solutions and package terminal heat pumps remain a preferred go to solution
- Early adopter concerns about a solution not used or installed before by Developers team
- Regulatory hurdles seem insurmountable in some cases
 - District loops crossing over highways and sidewalks
 - Heat from sewage
 - Lake/ river loop solutions

Geothermal and VRF Comparison

Metric	Geo	VRF	
Capital Cost	<u> </u>		Geothermal capital costs are higher, however additional incentive availability supports rapid project paybacks
Futureproof			Hydronic distribution is the most futureproof distribution system and high efficiencies hedge against future carbon and utility demand costs and possible phase down of VRF refrigerants over next decade
Efficiency			A hybrid geothermal system achieves a 45% reduction in energy consumption compared to VRF with domestic hot water (DHW) boiler
Carbon Savings			A hybrid geothermal system achieves a 45% reduction in carbon emissions compared to VRF with DHW boiler
Toxicity			VRF circulates toxic refrigerants through residential spaces, whereas hydronic systems circulate water through residential spaces
Innovation			Energy piles are an incredibly cost-effective innovation that yields a significant benefit to project operations and the community
Operating Cost			The efficiencies of a geothermal system support utility cost savings and maintenance savings
Metering			VRF systems have better packaged metering products, however hydronic systems can also be fitted to meter consumption

Note: The comparison assumes a geothermal system with hydronic distribution

Grid Demands as NYC Electrifies

Concern if we do not see greater uptake of geothermal solutions and sticking to the usual!

- VRF solutions and package terminal heat pumps remain a preferred go to solution
- Our study showed electrical usage dropped between 44 and 50% when using GSHP compared to all VRF(ASHP)

Source: Urban Green Council - Grid Ready Mapping Tool (https://maps.urbangreencouncil.org/? ga=2.11401779.649653248.1661779473-493388574.1661779473)

THANK YOU

Tony Amis, Senior Vice President of Business Development

tamis@endurant.com