BUILDINGENERGY BOSTON

Commitment to Learning: A Case Study of Three Public Schools

Suni Dillard (HMFH Architects) Alexandra Gadawski (HMFH Architects) Caitlin Osepchuk (HMFH Architects)

Curated by Aidan Mayer and Joy Yakie

Northeast Sustainable Energy Association (NESEA) March 28, 2023

Building Energy Boston Commitment to Learning | Case Study of 3 Public Schools

March 28, 2023

SPEAKERS

Alexandra Gadawski

AIA, WELL AP, LEED AP BD+C

Associate Sustainability Leader HMFH Architects

Caitlin Osepchuk

AIA

Associate HMFH Architects

Suni Dillard

AIA, LEED AP BD+C

Senior Associate Sustainability Leader HMFH Architects

Break the ice...

SUSTAINABILITY VISIONING

ACTIVITY:

Consider your top priority related sustainability, or sustainable practices more generally and write it down.

Sustainability for All

Thoughtfully addressing overlapping systems requires effort and coordination between multiple design disciplines along with the project community.

Public school projects are a highly visible commitment from a community towards future generations, serving a wide range of students from diverse backgrounds and are a valuable resource to the surrounding community. Balancing strategies that fit within the goals and budget of a public institution and focused equally on energy, carbon, water, and waste can be difficult. Linking the strategies for each goal to impacts on the health and well-being of students provides a new framework for evaluating the impacts of design.

FRAME THE CONVERSATION

what is **SUSTAINABILITY**

SOCIAL SUSTAINABILITY health & wellbeing place connectivity

ECONOMIC SUSTAINABILITY

prosperity living infrastructure resource regeneration

ENVIRONMENTAL SUSTAINABILITY

resource regeneration living infrastructure health & wellbeing

connectivity living infrastructure prosperity health & wellbeing

SET GOALS

MATERIALS + SOCIAL JUSTICE

Red list Free Materials for all Touch Surfaces

Inclusive and Equitable Design and Process

HEALTH + WELL-BEING

Access to Fresh Air in all Regularly Occupied Spaces

Access to Daylight and Views in all Regularly Occupied Spaces

Maximize Access to Educational Content through Enhanced Acoustic Performance

WASTE + WATER

% Indoor Water Use Reduction

Comprehensive Composting Program

Potable Water Use Reduction

On-Site Stormwater Management

ENERGY + CARBON

No On-Site Combustion

Zero Energy Building

Maximize Incentives and Grants

Measure Embodied Carbon at every project phase

Reduce Embodied Carbon - LEED Standards

CASE STUDIES

Bristol-Plymouth Regional Technical High School

SIZE 420,000 SQFT GRADES 9-12 ENROLLMENT 1434 OPENS 2025 Annie E. Fales Elementary School

SIZE 72,000 SQFT GRADES K-3 ENROLLMENT 400 OPENED 2021 Produces 11.6% More Energy than is consumed

24.9 EUI

40 Geothermal Wells @ 600'

1,354 PV Panels @ 375W / Panel

648,000 kw-hr PV Array

100% of the Learning Spaces have access to daylight and views Bristol County Agricultural High School

SIZE 113,500 SQFT NEW 82,500 SQFT RENO GRADES 9-12 ENROLLMENT 640 OPENED 2020 39 pEUI for CSE 68% Water Use Reduction from code 221 metric tons carbon avoided with (3) Timber buildings compared to steel

744 metric tons carbon avoided by reusing existing buildings

92% Regularly Occupied Bldgs have access to daylight and views

Bristol-Plymouth Regional Technical High School TAUNTON, MA

BRISTOL-PLYMOUTH REGIONAL TECHNICAL HS

Sustainability and Educational Design goals

THINKING BEYOND BUILDING OCCUPANTS

Circular Economy + Embodied Carbon

HMFH INITIATIVE GOAL - RED List Free Materials

HMFH's design approach creates buildings with the best possible environmental quality. We focus on standards that optimize human health without compromising the health of the natural environment. This is done by specifying non-toxic materials based on the best available information and data. Our priority is the surfaces we touch but aim for all materials on any given project.

HMFH PILOT PROGRAM In the News - Coordination with MSBA

'The more you dig into it, you think, Oh, God.' A growing mission seeks to reduce toxic chemicals in schools

By Kay Lazar Giobe Staff, Updated May 2, 2022. 7:15 a.m.

Boston Globe May 2, 2022

Jack McCarthy, executive director of the Massachusetts School Building Authority, aims to stash the number of toxic chemicals used in construction and renovation projects in the state's schools. JONATHAN WIGGS/GLOBE STAFF

The image is seared in Jack McCarthy's mind: a group of pre-kindergarteners gathered for story time, sitting in a circle on the carpet of a classroom, amid an invisible witches' brew of chemicals lurking in the dust on the floor.

Ever since he heard a talk a couple of years ago about health problems linked to flame retardants, stain repellents, and other potent building chemicals, McCarthy, executive director of the Massachusetts School Building Authority, has been on a mission to slash the number of such substances in the state's schools. His vision is taking hold in a \$305 million construction project for a new Bristol-Plymouth Regional

HMFH PILOT PROGRAM - INTERNAL TRACKING Material Sorting - Tier System

TIER 1 - LBC Declare Label with Red List Free Status

Products that disclose 100% of ingredients present at or above 100ppm (0.01%) in the final product and do not contain any Red List chemicals

TIER 2 - LBC Declare Label with Red List Approved Status

Products that disclose a minimum of 99% of ingredients present in the final product and meet the Red List Imperative requirements through one or more approved exceptions

TIER 3 - Cradle to Cradle Gold TIER 4 - Cradle to Cradle Silver

TIER 5 - LBC Declare Transparency Label

Products disclose 100% of ingredients present in the final product, but contain one or more Red List chemicals that are not covered by an approved exception

Every product specified requires an HPD/EPD or letter stating they do not have an HPD/EPD

MATERIAL LABELS

Abiotic Depletion

Acidification Potential

Eutrophication Potential

Global Warming Potential

Ozone Layer Depletion Potential

Photochemical Ozone Creation Potential

https://www.ul.com/resources/environmental-product-declarations-program

Ecotoxicity Human Toxicity

MATERIAL SELECTION CONSIDERATIONS

Transparency

Durability

Aesthetics

Cost

Warranty

Utility

Embodied Carbon

Material Transparency

Strategies for Implementation

EASY WINS EFFICIENCY

EASY WINS

ACOUSTIC CEILING TILES

EASY WINS

ACOUSTIC ROOM COMPONENTS

EASY WINS CARPET

EASY WINS RESILIENT FLOORING

CHALLENGE

GYPSUM

CHALLENGE PVC

CHALLENGE INSULATION

CHALLENGE LIGHTING

MISSING MEP DATA

Public Schools

The Challenge of three equals

LIMITING THE PALETTE

PUBLIC SPACE

ACADEMIC CORRIDORS

TYPICAL CLASSROOMS

PILOT PROJECT - MATERIAL SUMMARY

	MEETS GOALS	CHALLENGING	MORE INFO
ACT	٠		
Acoustic Room Components	•		
Gypsum		•	
Intumescent Paint			
Lighting			
Linoleum			
Lockers			
Marker Boards			
MEP			۲
Paint			٠
Spray Fireproofing	•		
Ceramic Tile	•		

Healthy Materials

Strategies for Implementation
MAINTAINING MATERIAL TRANSPARENCY GOALS

CLOSING THE LOOP

ADVOCACY

Annie E. Fales Elementary School WESTBOROUGH, MA

ANNIE E. FALES ELEMENTARY SCHOOL

Sustainability and Educational Design Goals

- Connect to Nature
- Design for Young Children
- Maintain an Intimate, Neighborhood School
- Achieve Net Zero Energy

PLAN LAYOUT

CIRCULATION SHARED ADMIN/TEACHER ART/MUSIC/TECH CLASSROOM SPECIAL ED SPECIAL ED ATHLETICS TOILET MECH/STORAGE

Mark.

FIRST FLOOR

SITE LAYOUT

Connections to surrounding nature and fostering environmental stewardship

ENERGY GOAL

for this project Zero Net Energy is defined as:

producing on-site renewable energy equal to the energy used to operate the building annually

How did we get there?

- 1. Reduce energy use as much as possible
- 2. Produce as much energy as possible

COMPONENTS OF ENERGY USE

Fales Total Energy Use Intensity (EUI) = 24.9

Balancing Energy Goals Strategies for Implementation

AIR DISTRIBUTION

EASY WINS GEOTHERMAL WELLS

PINSHED SROUND SUMPACE -

CHALLENGES GEOTHERMAL PUMPS

HIGH EFFICIENCY EQUIPMENT

EASY WINS SITE STRATEGIES

ENVELOPE STRATEGIES

- R30 for walls, R40 for roofs
- 25% window to wall ratio
- Triple glazed windows & skylights
- Balance solar heat gain & visible light

South, West, East Facades: U-Value= 0.13 Solar Heat Gain = 0.23 Daylight Transmission = 54% UV Transmission = 20%

North Facade: U-Value= 0.13 Solar Heat Gain = 0.33 Daylight Transmission = 60% UV Transmission = 28%

LIGHTING

Control and Analysis

Position glazing for Daylight Autonomy (DA)

DA = percent of operating hours that an area can be lit exclusively with daylight

Control Artificial Lighting

- Daylight and occupancy sensors
- Fixtures zoned to balance daylight
- Master controls linked to BMS

Low Light Power Density (LPD)

- Benchmark LPD is 1.2 watts per sf
- Target LPD is 0.43 watts per sf

POWER Plug Load

DAYLIGHT STRATEGIES

ESTABLISHING TARGET ENERGY USE INTENSITY (EUI)

EUI = the amount of energy per square foot to operate the building over the course of a year

- benchmark for US K-12 schools = 75 EUI
- typical for a net-zero school = 20-25 EUI
- Fales target = 27.5 EUI

Projected Annual Energy Use = 2,178,000 kBTU

RENEWABLE ENERGY

Solar PV

	Back-of-the-Envelope	Final Design
Energy Use Intensity:	27.5 EUI	24.9 EUI
Annual Energy Use:	638,000 kW-hr	585,000 kW-hr
Annual Energy Production:	638,000 kW-hr	648,000 kw-hr

Size of PV System: Watts per Panel: Size of Array	580 kW	508 kW	
	320 W	375 W	
	32,000 sf	24,000 st	

CHALLENGES CONFLICTING GOALS

Energy Production and Energy Reduction

- Skylights and Solar PV Competing for roof area
- Traditional skylights have poor insulating values

ROOF MASSING OPTIONS

SAWTOOTH ROOF

Benefits

- Expands roof surface area by 18% over flat roof
- Brings more natural light into interior spaces
- Architectural expression of zero energy strategy

ACHIEVING NET ZERO ENERGY FALES ELEMENTARY SCHOOL

ENERGY STRATEGIES - SUMMARY

	EASY WIN	CHALLENGE
Low Flow Fixtures	•	
Limited Irrigation		
Mechanical Crawlspace	•	
All Electric, No Gas Cooking		•
No Gas Cooking	٠	•
Geothermal HVAC System	•	•
Limiting Plug Load		•
Window - Wall Ratio of 20%		•
Sawtooth Roof	٠	•
School as a teaching tool		

Bristol County Agricultural High School DIGHTON, MA

First State Funded (MSBA) Building with Composting Toilets BE+ Green Building of the Year 2022

BRISTOL COUNTY AGRICULTURAL HS

Thoughtfully addressing overlapping (water) systems requires effort and coordination between multiple design disciplines.

Architect HMFH Architects

Stormwater Management

Civil Engineer Samiotes

Landscape Architect Halvorson, Tigh & Bond

Potable Water Use Reductions and Storm Water Reuse

Plumbing Engineer Garcia Galuska DeSousa

Landscape Architect with Irrigation Consultant Irrigation Consulting, Inc.

EXISTING CAMPUS

220 acre working farm along the Taunton River

Public career technical vocational high school

Agricultural and science based curriculum

22 Sending communities

Combined educational and sustainability goals

CAMPUS ANALYSIS

BRISTOL COUNTY AGRICULTURAL HIGH SCHOOL Sustainability and Educational Design goals

- All new facilities should be highly energy efficient, set net zero as a goal!
- Promote sustainable agricultural practices and sustainability curriculum
- Grow more food for students

- Achieve 10% better than code
- Make each building /structure a champion for specific sustainability measures
- Center for science and the environment will be a 'living lab' for the students and the community
- Design the dairy barn to be NZE
- No impact on the taunton river watershed

NEW SITE PLAN

Project includes 6 buildings; 4 NC and 2 Renovations. Of the NC, 3 were timber (2 Mass Timber).

Center for Science and the Environment (CSE)

WATER GOAL

Do no harm to the Taunton River

The Taunton River is a federally designated Wild and Scenic River (NPS)

Bristol Aggie is situated along the river where it is brackish - a sensitive ecotone and major contributor to the students educational journey

TAUNTON WATERSHED

Dighton's water supply comes from 5 groundwater wells

In recent years the well water levels have dropped significantly due to lack of recharge

The town had to issue a complete watering ban in 2020

Water Conservation

Strategies for Implementation
SITE WATER STRATEGIES

EASY WIN SITE WATER

Use Reduction

Green Roofs

Rainwater harvesting: 40,000 gal. cistern. 20,100 roof captured 22,000 sf irrigated landscape

Limited irrigation area

Water efficient planting

EASY WIN SITE WATER

Groundwater Recharge

Rain Chain and Basin

Bioswale

Subsurface infiltration Structure

Infiltration Basin

INTENSIVE GREEN ROOF

VISUAL CONNECTION TO WATER SYSTEMS - - -

COMPOSTING TLTS
EXTENSIVE GREEN ROOF
UNDERGROUND CISTERN

EASY WIN GREEN ROOFS

	Та	ble 6 – R1			
Pre-development Fixture Flow Rates Versus Post-development Ultra-Water Saver Fixture Flow Rates					
Post-development offra-water saver fixture flow hates					
Fixture Type	Average Flow Before 1994	Minimum Standard After 1994	% Reduction		
Toilet	3.5 gal/flush	1.28 gal/flush	63		
Urinal	1.5 gal/flush	0.125 gal/flush	92		
Lav Sinks	3 gal/min	0.35 gal/min	88		
Hand Sprays					
(lever triggered)	1.75 gal/min	1 gal/min	43		
Clevis Multrum	3.5 gal/flush	.023 gal/flush (not tributary to Bristol Aggie Pump Station)	99		
Classroom Sinks	3.5 gal/min	0.5 gal/min			
Laboratory Sinks	3.5 gal/min	.74 gal/min			
Showers	3 to 4 gal/min	1.5 gal/min			
Kitchen Dishwasher	5.4 gal/min	1.8 gal/min			
Wash sink (trough) ead – manually operated	7 to 8 gal/min	Eliminated in post-development program	N/A		

EASY WIN LOW FLOW FIXTURES

Except for 7 toilets, Bristol Aggie water fixtures pre-date 1992 and are not compliant with the U.S. Energy Policy Act of 1992.

There are some fixtures that are so archaic that they most likely exceed the range of pre-1992 published (or anticipated) flow rates.

BRISTOL AGGIE WATER USAGE

Code Baseline Comparison

FLUSH FIXTURES

COMPOSTING TOILETS

WATER STRATEGIES - SUMMARY

	EASY WIN	CHALLENGE
Low Flow Fixtures	٠	
Limited Irrigation	۲	
Drought Tolerant Planting	۲	
Green Roofs	٠	
Rainwater harvesting - Irrigation	٠	
Rainwater harvesting - Tlts		
Rain Gardens		•
Infiltration Structures	۲	•
Composting Toilets	۲	
School as a teaching tool	٠	

*With minor additional coordination all strategies above could easily be achieved. The challenge often lies in the additional cost water strategies require, whether infrastructure or energy costs.

Holistic Design

Connecting Strategies

OVERLAPPING STRATEGIES

MATERIALS + SOCIAL JUSTICE HEALTH + WELL-BEING WASTE + WATER ENERGY + CARBON

HMFH ARCHITECTS

Alexandra Gadawski agadawski@hmfh.com

Caitlin Osepchuck cosepchuck@hmfh.com

Suni Dillard sdillard@hmfh.com