BUILDINGENERGY BOSTON

Driving Down Carbon in Concrete: From One Project to the Mainstream

> Rachelle Ain (Utile) Nate Roy (LeMessurier) Olivia Humphrey (Payette)

Curated by Beverly Craig

Northeast Sustainable Energy Association (NESEA) March 28, 2023

Rachelle Ain, AIA, CPHC, WELL Associate Co-Chair CLF Boston / Northeast ain@utiledesign.com

utile

Nathan Roy, P.E. Principal nroy@lemessurier.com LeMessurier.

Olivia Humphrey, LEED AP BD+C Designer ohumphrey@payette.com

Embodied Carbon Reduction Challenge

- ✓ \$50,000 Grand Prize New Construction
- ✓ \$50,000 Grand Prize Substantial Rehab
- ✓ 9 Runner-ups of \$30,000
- ✓ \$10,000 People's Choice Award
- New construction or substantial renovation of any type (multifamily, office, institutional, lab, etc.) 20,000+ sq. ft.
- Embodied carbon trainings coordinated by BE+
- 5 prizes reserved for teams that have never produced an LCA
- Applications due March 2024

Concrete EPD Kickstarter: Environmental Product Declarations

- \$3,000 grant for each MA ready-mix plant; extra \$1,000 for small companies (1-2 plants)
- To partially offset costs for third-party verified site specific instant EPDs
- Two years of volumes reporting to MaCAPA

What is Embodied Carbon?

	Product Construction		Use	End-of-Life	
Embodied Carbon				A 📼 💼	
Operational Carbon	Raw Material Manufacturing Supply	Construction - Installation	Operations Maintenance and Repair	Deconstruction / Waste Processing, Demolition Disposal	

Embodied Carbon is the greenhouse gas emissions (CO₂) from the manufacturing, transportation, installation, maintenance, and disposal of building materials.

Unlike with operational carbon, there is no chance to decrease embodied carbon with updates in efficiency after the building is constructed.

Image Source: Carbon Leadership Forum, 2020

Structural Impact in Embodied Carbon

Embodied carbon is a significant percentage of global emissions and requires urgent action to address it.

Image Source: Architecture 2030. Data source: Global ABC Status REport, 2018, EIA

Opportunities to Reduce Embodied Carbon

Image Source: 2018 SEI Sustainability Commitment

The Basics of Concrete

SCM's: The Front Line

GWP (global warming potential) of Portland Cement & SCMs

Opportunities Throughout Concrete

Rebar

Using higher strength rebar to reduce the amount of rebar used

Consider using plain concrete where possible - eg, flatwork

Avoid "overspecifying" the strength of the concrete

Reuse

Where possible, explore opportunities to re-use existing buildings, building structures, and sitework instead of demolition

Explore the possibility of using recycled concrete

Carbon Neutral/Negative

Utilize concrete as a carbon sink (eg Carbon Cure)

Leveraging concrete's continued carbon absorption in curing process

Biogenic processes (eg Minus Materials & BioMason)

Embracing Opportunities, Working with Challenges

Opportunities	Challenges
Designing Efficient Structural Systems Consider Hybrid Structures (ie Mass Timber Frame)	A/E "Growing Pains"
Standardizing Specifications Low Concrete Specifications	Navigating regional differences Responding to market supply for SCM's
Establishing aggressive but realistic reductions	Weeding out inflated baselines
Requiring EPD's	Permutations of concrete mixes
Standardizing approach to ubiquitous applications (eg. sitewalks)	Establishing best practices for concrete mixes and applications
Adopting Innovative SCM's and SCM mixes	Industry "Growing Pains" Nascent Data & Research Adjusting schedule due to increased drying times

EPD's

(environmental product declarations)

- We need more concrete EPD's!
- We need plant-specific EPD's!
- EPD's help us set targets and see how we're meeting them. The performance of a specific concrete mixture to benchmark data can be readily verified
- EPD's provide room for flexibility in how concrete mixes are selected throughout the project.

EPD's

Getting Lower Carbon Concrete in Early

Specifications

Move away from prescriptive requirements

• Limits options, limits ability of manufacturers to apply creative solutions through different mixes, discourages innovations

Move towards performance requirements

- Define target carbon footprints by whole building and by concrete - eg, as percentage under benchmark established in NRMCA's Cradle-to-Gate Life Cycle Assessment v 3.2
- Understand market flux and availability

Available Resources:

<u>NRMCA Guide to Improving Specifications for Ready</u> <u>Mixed Concrete</u>

Percentile Based Approach:

Specifier can set targets that exclude the use of a selected percentage of available mixes, with 50th percentile representing typical practice.

Athena Sustainable Materials Institute has published benchmark concrete mixes based on NRMCA industry-averaged EPD's for each region.

CASE STUDY

Boston University Centerfor Computing and Data Sciences

- **Project Summary**
- Sustainable Goals
- Structure
- Strategies
- Lessons Learned

2 3

Embodied Carbon Opportunities

Reuse of Shoring

Low-Carbon Concrete

Total Concrete = 20,500 CY

Structural	Baseline	
Component	(Boston Area)	
Mat Foundation	40% SCM	
Foundation Walls	20% SCM	
Core	20% SCM	
Columns	20% SCM	

***SCM:** supplemental cementitious materials

****** Baseline; NRMCA and Boston Experience

FOUNDATION WALLS ->

COLUMNS

Performance Based Specifications

- Update Concrete Specifications to a Performance-Based Approach Eliminates the need for design team to assign prescriptive limits
- Assign durability exposure by structural component type

Limitations on mix design determined by durability exposure (e.g. maximum SCMs, w/cm, etc)

- Specify performance requirements
- Responsibility is on ready-mix concrete supplier to meet performance requirements

Performance Requirements

- Strength at time
 Final design strength
 Early design strength
- Modulus of Elasticity
- Slab workability / finishability
- Shrinkage
- Density of light weight concrete
- Maximum aggregate size
- Temperature limits
 Thermal control
 Hot / Cold weather placements
- Air content

SCM EFFECTS: PROPERTIES OF CONCRETE

	Fly	Ash	Slag Comont	Silico Eumo	
	Class F	Class C	Slag Cement	Sinca i une	
Water Demand	Lowers	Lowers	Lowers	Increases	
Workability	Increases	Increases	Increases	Lowers	
Bleeding and Segregation	Lowers	Lowers	May lower or increase	Lowers	
Setting Time	Increases	May lower/increase	Increases		
Air content	Lowers	Lowers		Lowers	
Heat of Hydration	Lowers	May lower or increase	Lowers		
Early Age Strength	Lowers		May lower or increase	Increases	
Long-term Strength	Increases	Increases	Increases	Increases	
Freeze/Thaw					
Corrosion Resistance	Increases	Increases	Increases	Increases	

Fly Ash ASTM C618

Slag Cement ASTM C989

Silica Fume

Data Gathering – Initial Meetings

- Draft alternate mix design table provided to bidders
- CM organized meetings been RMC bidders and SE

- Allowed us to understand what was possible; allowed them to understand what we were aiming for
- Both parties took it as a learning experience

an a	Durability Exposure		and the	and some		1.8	Nominal max	and the	1000000		
Structural component	F	5	w	с	Strength, f'c(psi)	Age (days)	Shrinkage Limit	Max w/cm	aggregate size (in)	% SCM (min)	% SCM (goal)
60" and 72" mat	FO	SO	WO	C1	6,000	90			1	50%	70%
Tower core walls	FO	SO	WO	C0	8,000	56	0.04	-	3/4	50%	70%
Tower core walls	FO	SO	W0	CO	10,000	56	0.04	-	3/4	50%	70%
Podium core walls	FO	S0	W0	CO	5,000	56	-	1	3/4	50%	70%
Foundation walls	F1	SO	W0	C1	5,000	56	-	0.55	1	50%	70%
Columns	FO	SO	W0	C0	8,000	56	-	-	1	50%	70%

Next Steps

- Conversations & planning
 - Focused on concrete
 - RMC bidders
 - Provided alternate mix design table
 - Reviewed available test data
 - Ran trial batches
- Follow up discussions incl. RMC vendors
 - Trial batch results
 - Reviews of mix design options
 - Plan for longer strength gain mixes

Low-Carbon Concrete

Structural	Baseline	Proposed
Component	(Boston Area)	-
Mat Foundation	40% SCM	60-70% SCM
Foundation Walls	20% SCM	60-70% SCM
Core	20% SCM	70-80% SCM
Columns	20% SCM	60-70% SCM

SCM: supplemental cementitious materials

COLUMNS

FOUNDATION WALLS ->

LEED + Embodied Carbon

Embodied Carbon

Global Warming Potential (GWP)

Acidification Potential (AP)

B

LEED BD+C v4: New Construction

Eutrophication Potential (EP)

Smog Formation Potential (SFP)

Depletion of Non-Renewable Energy (NRE)

Ozone Depletion Potential (ODP)

MRc1 Building life-cycle impact reduction Option 4: whole-building life-cycle assessment (3 points)

REQUIREMENTS:

- Conduct LCA of structure and enclosure
- Demonstrate 10% reduction in at least 3 of the 6 impact categories (including GWP)

LEED + Embodied Carbon

LEED v4.1 MRc1

Up to 5 points achievable via WB-LCA

- 1 point for disclosure,
- 2 points for 5% reduction,
- 3 points for 10% reduction,

- 4 points for 20% reduction & reuse,
- +1 regional priority point

Potentially 4 points under LEED v4.1

Life Cycle Assessment

Whole Building Life Cycle Analysis (WBLCA):

• Structure

• Enclosure

Impact Category	Baseline Building Value	Proposed Building Value	Units	Percent Reduction (%)
Global Warming Potential	13,846,076	11,912,481	kgCO2 eq	14%
Ozone Depletion Potential	1.51	1.51	kgCFC-11 eq	0%
Acidification Potential	48,849	44,224	kgSO2 eq	10%
Eutrophication Potential	2,643	2,297	kgN eq	13%
Smog Formation Potential	741,623	641,486	kgO₃eq	14%
Non-renewable Energy Demand	125,920,735	114,637,982	MJ	9%
Number of Measures with at least a	10% reduction:	1		-4

Table 1: Summary of Required Impact Categories between Baseline and Proposed Buildings

WBLCA (Structure + Façade)

Proposed: 14% reduction T CO₂e

Embodied

(Reduced)

(Reduced)

Environmental Product Declaration (EPD)

MAT SLAB

This Environmental Product Declaration (EPD) reports the impacts for 1 m³ of ready mixed concrete mix, meeting the following specifications:

- ASTM C94: Ready-Mixed Concrete
- + UNSPSC Code 30111505: Ready Mix Concrete
- CSA A23.1/A23.2: Concrete Materials and Methods of Concrete Construction
- CSI Division 03-30-00: Cast-in-Place Concrete

COMPANY

Aggregate Industries

6401 Golden Triangle Drive Suite 400 Greenbelt, MD 20770

PLANT

Everett Plant 2018 Rover Street Everett, MA 02149

EPD PROGRAM OPERATOR

ASTM International

100 Barr Harbor Drive West Conshohocken, PA 19428

DATE OF ISSUE

10/31/2020 (valid for 5 years until 10/31/2015)

ENVIRONMENTAL IMPACTS

Declared Product:

Mix ECOPACT6 • Event Plant 6000.EMERALD HS90ETH2T70.N Compressive strength: 6000 PSI at 56 days

Declared Unit: 1 m³ of concrete

Global Warming Potential (kg CO2-60)	231
Ozone Depletion Potential (kg CFC-11-kg)	8.1E-6
Acidification Potential (kg SO2-eq)	1.19
Extrophication Potential (kg N-kg)	0.29
Photochemical Ozone Creation Potential (kg O2-kg)	22.1
Abiotic Depletion, non-Foesil (kg Sb-eq)	8.76-6
Abiotic Depletion, found (MJ)	722
Total Waste Disposed (vg)	1.82
Consumption of Reshwater (m ²)	3.10

Product Components: crushed aggregate (ASTM C30), ratural aggregate (ASTM C33), stag correct (ASTM C980), fly ash (ASTM C618), Portland connent (ASTM C190), admixture (ASTM C494), batch water (ASTM C1902)

Additional detail and impacts are reported on page three of this EPD

This Environmental Product Declaration (EPD) reports the impacts for 1 m³ of ready mixed concrete mix, meeting the following specifications:

- ASTM C94: Ready-Mixed Concrete
- UNSPSC Code 30111505: Ready Mix Concrete
- CSA A23 1/A23.2: Concrete Materials and Methods of Concrete Construction
- CSI Division 03-30-00: Cast-in-Place Concrete

COMPANY

Appregate Industries

6401 Golden Triangle Drive Suite 400 Greenbelt, MD 20770

PLANT

Everett Plant 2018 Rover Street Everett, MA 02149

EPD PROGRAM OPERATOR

ASTM International 100 Barr Harbor Drive

West Conshohocken, PA 19428

DATE OF ISSUE

04/15/2021 (valid for 5 years until 04/15/2026)

CORE

ENVIRONMENTAL IMPACTS

Declared Product: Mix AGEA10 • Everett Plant 10000.AGEA.S3DETH.PS30.S3SR Compressive strength: 10000 PS1at 56 days

Declared Unit: 1 m³ of concrete

Gobal Warning Potential (kg COgerg)	481
Ozone Depletion Potential (kg CFC-11-eq)	1.436-6
Acidification Potential (kg 50p-eq)	1.76
Extrophication Potential (kg N-oc)	0.58
Photochemical Geone Greation Potential (kg Oy-eq)	33.0
Abiotic Depletion, non-fossil (kg Sb-eq)	1.046-5
Abiotic Depletion, fossill (MJ)	657
Total Waste Disposed (kg)	4.01
Consumption of Preshwater (m ²)	3.11

Product Components: crushed aggregate (ASTM C33), ratural aggregate (ASTM C33), Portland cement (ASTM C150), stag cement (ASTM C969), admixture (ASTM C494), batch weter (ASTM C1602)

Additional detail and impacts are reported on page three of this EPD

WBLCA (Structure + Façade)

- Proposed: 14% reduction T CO₂e
- Revised Realized: 13.3% reduction T CO₂e

Embodied

	Structural Material Quantities			
	Difference between Delivered v BIM Model or Documented	Difference Adjusted for Typically Not Modeled (known)		
Concrete	14.9%	8.3%		
Concrete reinforcement	13.7%	8.8%		
Structural steel	12.6%	10.8%		
Steel decking	13.7%	13.7%		

BU CCDS - Lessons Learned

• Structural Engineer

- Performance based concrete specifications
- Identify exposure class of all structural components
- Identify SCM targets for concrete structural components
- Make a connection with the local ready-mix concrete suppliers earlier in design
- General Contractor / CM
 - Identify early age strength needs for sequencing and scheduling

BU CCDS - Lessons Learned

Architect

- Identify areas where concrete finishes are exposed and/or considered critical
 - Color
 - Texture
 - Jointing
 - Test panels

BU CCDS - Lessons Learned

• Ready-mix concrete plants (supplier)

- What have they done before?
- What test data do they have available to share? Ask for EPDs
- What do they expect is achievable?
- Where is their comfort level with high SCM mixes?

Concrete subcontractor (installer)

- What have they done before?
- What do they expect is achievable?
- Where is their comfort level with high SCM mixes?

BU CCDS – Key Points to Successful Implementation

- 1. Start early DD or earlier
- 2. Have a "Low-carbon kick-off meeting"
- **3**. Gather the stakeholders review
 - Owner / OPM
 - General Contractor / CM
 - Architect
 - Structural Engineer
 - Sustainability Consultant
- 4. Build consensus & buy-in: follow up, research, and planning
 - What is the embodied carbon in concrete (baseline)?
 - Does the team want to reduce it? And by how much?
 - What are the possible performance / visual implications of reducing?
 - Will there be a cost or schedule impact?
- 5. Schedule the follow up(s) periodic check ins

"Who are the individuals who will support this effort the most and help maintain the much-needed momentum throughout the entire process? Stick with them." – Owner

Embodied Carbon Policy - Working Groups

Embodied Carbon Policy - NE

Local is moving faster than State

- Need for regional consistency
- All are moving the needle

Industry Readiness

 Architects, structural engineers, contractors and suppliers are incorporating assessment and reductions into practice as policy progresses

Embodied Carbon Policy Approaches

Optimize Project	Optimize System	Optimize Procurement			
 Build less, reuse more Design to reduce EC and increase material/structural efficiency 	 Choose low-carbon systems and assemblies Use alternate, low-carbon materials 	 Select the lowest carbon version of the selected product Clean manufacturing (efficiency, fuel switching) 			
Early Design Calculators, Rules of Thumb	Whole Building Life Cycle Assessment (WBLCA)	Environmental Product Declarations (EPDs) / EC3			
Zoning & City I	Producement (Puly Clean)				
Building Codes & Regulations					
Climate Action Plans					

Municipal Policy - MA

Cambridge

• Net Zero Action Plan

Newton

- Sustainability Ordinance
- Measurement requirements in progress

Brookline

- Resolution for Embodied Carbon Reduction in Concrete
 - Municipal Projects & Infrastructure

Boston

- Mass Timber Accelerator Incentive
- Article 37 and Zero Net Carbon Building Zoning Update
- Zero Waste Boston
 Deconstruction Initiative

Municipal Policy

New York City

- EO 23: Clean Construction
 - Capital Projects & Infrastructure

San Francisco

Construction & Demolition Law

City of Vancouver

• Whole Building Life Cycle Assessment Zoning Requirement

Industry Influencing Policy

Precast Concrete

Image & Data Source: Kaleidoscope, 2023

Kaleidoscope Early Design Tool: Partitions Launch!

Kaleidoscope: Embodied Carbon Design Tool

State Policy - MA

MCAN & CLF Working to Develop

 An Act Incorporating Embodied Carbon into State Climate Policy
 Private Sector

An Act Requiring State Procurement of Low-Carbon Building Materials

State Projects

- An Act Relative to the Use of Low-Embodied Carbon Concrete
 - State Projects & Infrastructure

LECCLA

(LOW EMBODIED CARBON CONCRETE LEADERSHIP ACT)

New York

Passed 2021

Requires state to include climate impact in selection criteria for concrete procurement

New Jersey

Passed 2023

Provides income tax credit of up to 8% of the concrete cost for development and provision of a product whose carbon footprint is below a soon-to-be set benchmark

Image Source: CarbonCure, 2023

Buy Clean State Policy

Image Source: Carbon Leadership Forum, 2020

Federal Policy

Inflation Reduction Act (IRA), Aug. 2022

- Funding to develop & standardize EPDs
- Funding to identify and label low-carbon materials (Federal Projects)
- EPA administrator to identify materials

EPA Public Engagement Webinars - April 19th

 Reducing Embodied Greenhouse Gas Emissions: Carbon Labeling

There is room to reduce emissions on every design.

Ask for **concrete EPDs** as much as possible

Comment on the EPA's carbon RFI on how to make the biggest impact

Get involved educating legislators at the local and state level

Get involved with CLF: clf.boston@gmail.com

Get Involved! clf.boston@gmail.com

Questions?

Rachelle Ain, AIA, CPHC, WELL Associate ain@utiledesign.com

utile

Nathan Roy, P.E. Principal nroy@lemessurier.com

Olivia Humphrey, LEED AP BD+C Designer ohumphrey@payette.com

