BUILDINGENERGY BOSTON

How Will You Meet the Demand? Scaling Passive House Certification for the New Energy Code

> Nicholas Hernandez (New Ecology Inc) Maciej Konieczny (New Ecology Inc) Mark Norton (New Ecology Inc)

Curated by Danny Veerkamp and Alison Keay

Northeast Sustainable Energy Association (NESEA) March 29, 2023

How will you meet the demand? Scaling Passive House Certification Process to Prepare for the New Energy Code

Introductions

New Ecology, Inc. A mission driven nonprofit focused on making affordable housing healthy and sustainable with offices in Boston, Baltimore and Wilmington.

Buildings modeled in WUFI	100+
Feasibility Studies Completed	60+
Registered PH Projects	40+
Pre-Certified Projects	25+
Certified Projects	3

Maciej Konieczny CPHC/B, CEM, LEED AP BD+C, Homes Director of Building Technologies <u>konieczny@newecology.org</u> 617-557-1700 x7024

Nicholas Hernandez Energy Engineer hernandez@newecology.org 617-557-1700 x7047

Mark Norton PHIUS+, LEED, HERS Project Manager | New Ecology, Inc. <u>norton@newecology.org</u> 617-522-6919

AGENDA

- The "why?" to scale PH Certification
- The "how?": Affordable Housing leading the way in high performance
- Typical Approach
- Project Manager Perspective
- Energy Modeler Perspective
- Verifier/Rater Perspective
- Takeaways and Lessons Learned.

Mr. Konieczny,

I'm pleased to inform you that project #1660: Old Colony Phase Three C is now a pre-certified PHIUS+ 2015 project. Congratalations to you and your team.

In the next few days, please review the Project Details listed in the database and update them as necessary, as the project is now publicly visible. (We have set the CFA, AHD, PE, and Heat Load to match the energy model.) Also, if you have any new photos for marketing or publicity purposes, please uplead these to the Photos tab.

Thank you for choosing PHIUS+ 2015, and best wishes to your team on achieving final certification. Please contact us when commissioning is complete and you are ready for final certification review, or earlier if you have any other issues to discuss.

Regards,

James Ortega Lisa White Graham S. Wright Isaac Elnecave Andres Pinzon

Why? Code, Code, Code

- Starting January 2023 and implemented through July 2024
 Massachusetts will have three energy codes in effect
- High Level Takeaways (not a code presentation):
 - Residential ERI (HERS42/45) or Passive House
 - Commercial TEDI or Passive House with exceptions for high ventilation buildings
 - Limited Relative Pathway (ASHRAE) availability
- Other Considerations:
 - Municipal Opt-In Code significant interest
 - Municipal Fossil Fuel Free Building Construction and Renovation

Project – 10 communities in pilot program

Base Code (IECC 2021)

- New construction in towns & cities not a green community
- 52 communities
- Expected from BBRS: July 2023

Stretch Code (2023 update)

- New construction in towns & cities that are a green or stretch community
- 299 communities
- Residential : Jan 2023 Commercial: July 2023

Specialized Code ("Net-Zero")

- New Construction in towns & cities that vote to opt-in to this code
- Effective date: Typically 6-11 months after Town/City vote

THREE ENERGY CODES IN MASSACHUSETTS

Increase in Demand

Fun Statistics - in 2022:

- Phius Design Certified 79 MF projects in the US 25 were in MA and 11 non-res project in the US – 1 was in MA
- Boston issued 48 MF* Building Permits 4 were PH Design Certified
- Cambridge issued 7 MF* Building Permit 2 were PH design Certified
- 30% of Affordable Housing projects receiving LIHTC funding in 2022 were planned to achieve Passive House.
- Overall, 75% of Massachusetts's PHIUS design certified projects are Affordable

Early assessment of TEDI thresholds suggests PH may be an easier pathway to compliance = additional building typologies will join the PH bandwagon

Buildings Permitted in Boston requiring PH Certification

BOSTON | BALTIMORE | WILMINGTON

Affordable Housing: Getting an Early Start to High Performance

- Complex funding mechanisms
- Low Income Housing Tax Credits (LIHTC) Provides incentives for entities to invest in affordable housing projects to offset taxable income with generated tax credits over a 10 year period
- Application and timing
 - Qualified Allocation Plan (QAP) <u>rewards PH certification</u>
 - Applications accepted 2x per year
 - Requires significant design progress before funding is awarded
 - Start and stop based on awards and projects in pipeline
 - When awarded, then rush to closing
- Immediate start of construction

Starts and Stops = many projects in the pipeline

Affordable Housing (+ all construction): Accelerating to High Performance

- Steep Learning curve for project teams and NEI over the past 5 years with many challenges:
 - Understanding PH Certification metrics and updates one class is just a start!
 - Educating Ownership \$, \$, \$
 - Educating design team Architects/MEP/Structural
 - Educating construction team
 - Educating internal PM, modeling, and verification teams
- Expecting a **RUSH** of new high performance and PH projects

in residential and non-residential sectors.

OLD COLONY 3C FIRST AFFORDABLE SENIOR HOUSING CERTIFIED PASSIVE HOUSE IN MASSACHUSETTS

What Have We Learned From Affordable Housing?

Projects follow a typical path to certification

Scope Development

- Feasibility Study
- Charette

Design

- Plan reviews
- CPHC services
- Communications internally with Energy modeler and Verifier
- Communications externally with design team and Phius
- Coordination

Energy Modeling

- Feasibility Study
- Modeling iterations
- Responses to Phius comments

Verification

- Design participation
- Lead person for construction questions and answers
- Phius documentation

<u>Typical</u>

CPHC is the project manager and energy modeler. A Phius Verifier is brought on at start of construction

<u>NEI</u>

In-house resources for all stages and separated by role. All participate in the design stage.

Role	Benefit
Project Manager manages the design team, internal plan reviews and communicates Phius requirements. Coordinates energy modeling, verifier participation – tracks the BIG picture	Manages multiple projects, up to date on Phius requirements, experience with multiple construction typologies
Energy Modeler completes feasibility study and modeling for the project; provides input to performance of building components	Very fast and accurate early in the process; <u>knows</u> Phius protocols and shortcuts
Phius Verifier is included in design to be familiar with project design intent when construction begins	Provides input on constructability and hits the ground running once construction starts

<u>NEI</u>

In-house resources for all stages and separated by role. All participate in the design stage.

Role	Benefit
Project Manager manages the design team, internal plan reviews and communicates Phius requirements. Coordinates energy modeling, verifier participation – tracks the BIG picture	Manages multiple projects, up to date on Phius requirements, experience with multiple construction typologies
Energy Modeler completes feasibility study and modeling for the project; provides input to performance of building components	Very fast and accurate early in the process, <u>knows</u> Phius protocols and shortcuts
Phius Verifier is included in design to be familiar with project design intent when construction begins	Provides input on constructability and hits the ground running once construction starts

Typical Project – Define Objectives

Typical Project – Define Objectives

CUT THROUGH THE NOISE

FOCUS THE TEAM

Highlight critical PH requirements and define a 'starting point'

- Envelope Performance (CZ = 4/5)
 - INFILTRATION 0.06 CFM50/ft²
 - R-50 60 Roof; R-30 wall with c.i.
 - R-10 15 slab/foundation; U-0.15 windows
- Ventilation Performance
 - ~80% recovery efficiency; 1 W/cfm electrical
- Heating/Cooling
 - Heating COP>3.7 @ 47F; Cooling COP>5 @ 95F DB

PM SETS EXPECTATIONS HIGH MODELER SETS ASSUMPTIONS LOW

Typical Project – Complete Feasibility

Request Minimum Information:

- HVAC, Plumbing, and electrical narratives
- Architectural concepts
- Floor plans and representative sections
- Make assumptions (more on this later from Nick)

Define Reference Building

- Based on previously completed building by same developer
- Based on minimum code

1937 10/22/2019 Rev.1

Date:

The following is an outline of preliminary HVAC system options for Rindge Commons based on the following owner and team feedback from the charrette on 9/20/19:

- The project will likely pursue PHIUS+2018 or PHIUS+ Core certification as an alternate path to satisfy Cambridge's Article 22 requirement of "LEED Certifiability".
- On site renewables (Photovoltaic) will be required at a significant scale to meet PHIUS+2018. PHIUS+Core is likely a more suitable program as it is intended for multi-family projects (PHIUS recognizes that the PHIUS+2018 source energy targets are virtually impossible to meet with high density occupancies and created PHIUS+Core to make certification attainable).
- 3. Individual tenant metering for heating and cooling would be preferred but is not required.
- Individual air source heat pumps with individual outdoor units on the roof for each apartment would be the recommended system for 100% tenant metering of heating and cooling but this concept was ruled out to allow ample roof space for PV.
- All electric HVAC and Domestic Hot water System approaches are not required but will be considered.

Generate reference and proposed models
and summarize findings

- Report must be concise and clear
- Propose options to meet PH threshold
 - Select ECMs based on cost
 - Select ECMs based on impact
 - Windows vs ground
- Schedule min 1-hour meeting to review findings
- Re-run model as needed

EXPERIENCED MODELER IS CRITICAL FOR THIS PHASE TO BE IMPACTFUL

	NEW COLOGY	Project Name:		Rindge Commons Building B (Residential)		
	mentanteman	Climat	3	Boston Logan Int	ernational Airport	
	Community-Based Sustainable Development	Case		Reference Building (VRF Option)	PHIUS+ Core	
	Change from the Reference Building					
	Meets PHIUS Target	Notes		Baseline emplope provided in drawings, VRF Heating & Cooline, Central Gas-Fired DEW	Solar PV to meet PHIUS+ Core requirements. VRF	
	Misses PHIUS Target	1		county contract on the second	Heating and cooling, Central Gas-Fired DHW	
	WUFI PASSING RESULTS	Units	Target			
D (Heating Demand	kBtu/ft2.vr	4.00	7.07	1.99	
Reference	Cooling Demand	kBtu/ft2 yr	7.20	2.43	3.17	
huilding	Heating Load	Btu/hr ft2	3.80	6.82	2.46	
Dunung	Cooling Load	Diddininini Diddininini	2.50	2.67	2.41	
	Cooling Load	Diu/iii.itz	2.50	2.07	2.41	
	SITE ENERGY RESULT	Units	Target			
	Source Energy	kWh/person.yr	5,500	5,378	4,905	
	Site Energy Use Index	kBtu/ft2.yr	-	21	20	
Proposed	Site Energy Consumption	kWh/yr	-	545,505	507,698	
TToposeu	Geometry	Units	ł			
huilding	Interior Conditioned Floor Area (iCFA)	ft2		87,754	87,754	
building	Net Volume	ft3		799,891	799,891	
	Envelope Area	ft2		74,848	74,848	
	Average Window-to-Wall Ratio	%		19%	19%	
	Exterior Envelope	Units	8			
	Roof	R		50	50	
	Exterior Wall (1F)	R (effecti	ve)	21	21	
	Exterior Wall (2-6F)	R (effecti	ve)	28	28	
	Slab	R		15.0	15.0	
	Window	U		0.27	0.18	
		SHGC	2	0.3	0.3	
	Glazed Door	U		0.33	0.33	
	childer pour	SHGC		0.4	0.4	
NC 141 1 11	Opeque Door	R		4	4	
Missed threshold	Airtightness	Units				
	Air changes per hour at 50 Pa	ACH5)	3.00	0.34	
	Lighting Assumptions	Units	<u>.</u>			
	Lighting	kWh/y	t	85,426	85,426	
	Plug Loads	Units				
5 1501	Miscellaneous Electric Loads	kWh/y	r	84,695	84,695	
Proposed ECM	Occupancy	Units				
1	Bedrooms	#		160	160	
	Average Occupancy	# Bedroom	s + 1	237	237	
	Appliances	Units				
	Refrigerator	LWh/year/	unit	423	423	
	Dishwasher	kWh/year	mit	260	260	
	Clothes Washer	kWh/year/	unit	116	116	
	Clothes Dryer	Energy Fa	ctor	3.4	3.4	
	Electric Cooktop	kWh/us	e	012	0.2	
	Ventilation	Units	9			
	Dryer Exhaust	cfm		125	125	
	ERV Ventilation	cfm		5,500	5,500	
	ERV Power	W/cfm	1	1.0	0.8	
	ERV Recovery Effiency	%		80%	80%	
	Mechanical Systems	Units				

Typical Project – Design Process

Early Design

- Participate in regular meetings
- Provide examples and input
- Recommend materials/windows
- Register project with Phius

Mid Design

- Request a ~50% DD set; review and comment
- Submit project into queue and request changes from team
- Upload documentation for 1st round Phius review (earlier if complex)
- Review Phius comments do NOT send feedback form to client

Calculation based on ISO 15099		_						
Product name: Kohltech CPVC Out		C	enter-of	-glass properties				
ASHRAE/IECC N /DOE North E American W	Examples	Kohite	ech 3mn g95, 1-3	n7036 surfaces 2 & 5 /8"OA No Grids				
Climate Zone South-facing fa	Whole-window installed U-value W/m2K BTU/hr.ft2.F	SHGC	<u>U</u> a	BTU/hr.ft W/m2K	LF			
8	0.86 0.15	0.	329	0.693 0.	122			
7	0.85 0.15	0.	.329	0.682 0.	20			
6	0.84 0.15							
5	0.84 0.15					NEED		
4	0.84 0.15					I NEL ROVIOW		
Marine North	0.85 0.15			NEW/R	VOD IOCY			Island Parkside Phase 2
Marine South	0.85 0.15			INE AA GA	JOLUGI			Lawrence, MA
3	0.85 0.15			month			Lav	vrence Community Works
2 West	0.85 0.15			Community-Based S	ustainable Development			,
2 Fast	0.85 0.15					7	0% DHCD One S	iton CD Set - 10/22/2021
		_						
Kohltech CPVC Outswing Transom	FRAME		NEL	reviewed the 09/30/20	21 70% CD DHCD One St	op set and specifications for the Island Parkside Phase 2 (project located in La	wrence, MA. The review
Super Spacer Premium Enhanced Fra	ame height U-frame		focu	sed on program requir	ements for PHIUS+ 2021	Core, Energy Star Multifamily New Construction (MFNC),	DOE Zero Energy R	eady Homes, and EPA Indoor
mm	in W/m2K BTU/hr.ft2.F	W/	AirP	LUS compliance and ge	neral sustainability and e	fficiency practices.		
Head	34 1.36 1.03 0.18							
Sil	34 1.36 1.03 0.18		Item	Dwg / Spec 1	IEI Comment		Source of	NEI Follow up Required
left jamb 3	34 1.36 1.10 0.19			Section #			Requirement	No Further action
right jamb	34 1.36 1.10 0.19							Team Response
Valid through April 2024				GENERAL				reaminesponse
			1.	Spec Book	lease see attached temp scorporation into the spe	late Passive House specification section for ec book.	Passive House (Required)	Item fully addressed
			2.	01 81 11 Spec Book	he Builder or Developer 1 artnership Agreement ar Irientation", which can b The 3 rd party commissioni	for the project is required to sign an ENERGY STAR of complete the online "Builder / Developer e found at www.energystar.gov/homesPA. ng agent must have a credential listed on the following	Passive House (Required)	Requirements for Builder not specifically stated, same for the Functional testing agent.
					ttps://www.energystar.g other_participants, or is a Aanufacturer (OEM)	ov/partner_resources/residential_new/working a representative of the Original Equipment		Additionally, this spec section references the old version of Energy

Minimize changes later

Typical Project – Design Process

<u>NEI</u>

In-house resources for all stages and separated by role. All participate in the design stage.

Role	Benefit
Project Manager manages the design team, internal plan reviews and communicates Phius requirements. Coordinates energy modeling,	Manages multiple projects, up to date on Phius requirements, experience with multiple construction typologies
vermer participation - dates the bio picture	
Energy Modeler completes feasibility study and modeling for the project; provides input to	Very fast and accurate early in the process; <u>knows</u> Phius protocols and shortcuts
performance of building components	

How is it different from the project management process?

- Manage priorities instead of projects
- Maximize project output

How do we increase scalability?

- Consistent/optimized workflow
- Quick and efficient processes

Energy Modeling Workflows

NE\

munhhumm

Community-Based Sustainable Development

Building the Geometry

SketchUp

- Simple and user-friendly
- Many useful extensions
- Can import multiple file types
- Strongest compatibility with WUFI

Use hotkeys and extensions

- Assign keyboard strokes to most used tools
- Solid inspector, selection toys, etc.

Building the Geometry

Make use of REVIT model

- Reference floor plans and elevations while tracing
- Draw doors/glazing according to schedule
- Draw/define only unique components, then copy paste

Shell, Glazing, Shading

 Import into WUFI at each stage to quality check geometry

Performing Takeoffs

Many different tools can work

• Aim for familiarity, accuracy, and clarity

Save as individual files

- Measurements are there as soon as the file is opened
- Avoids cluttering the list of markups with irrelevant measurements

Can use markups to clearly label each measurement in Bluebeam

Performing Takeoffs

Measure only unique components

- Floor, units, pipe runs, etc.
- Can then copy/paste to identical components

Measure worst case scenarios

- DHW individual pipe run, in-unit ERV duct length, etc.
- Not recommended if extreme outlier
 - Use average

Running the Calculations

Use a template file

• Easily adjust inputs from project to project

Keep Phius and in-house spreadsheets in one file

- Many inputs are cross-referenced
- Streamlines data entry into WUFI
- Autofill report

Stay Organized

- Note down the takeoff file names used to complete calculations
- Save submittals and certifications as you use them
 - Note down these as well

WUFI Modeling

Have a completed model as a template

- Can import new geometry to replace old
- Ensure default inputs are correct
- Note which inputs need to be changed

Don't overcomplicate the model

- One component per each unique envelope type
- Input ventilation per device not room
- Typically only one mechanical system needed

de	efaults						
	Occupant quantity [-]	128	•				
- 1	Number of bedrooms [-]	88					
	Humidity sources [lb/(ft²hr)]	0.00041					
	Device list					Set stand	dard dataset
	Device/end use		Reference quantity		Quantity	In conditioned space	
	Kitchen refrigerator	~	PH case Units	\sim	40	✓	🗋 New
- 11	Kitchen dishwasher	\sim	PH case occupants	\sim		<	👗 Delete
- 4	Kitchen cooking	\sim	PH case occupants	\sim		✓	🖹 Сору
	Laundry - washer	\sim	PH case occupants	\sim		✓	🖺 Insert
	Laundry - dryer	\sim	PH case occupants	\sim		✓	New/Inse
1	User defined - lighting	\sim	User defined	\sim	1		after
	User defined - lighting	\sim	User defined	\sim	1		
П	User defined - lighting	\sim	User defined	\sim	1		
	Llear defined - Miss electric loads		Llear defined		1		

Lighting and plug loads need to be updated for each project

WUFI Modeling

Create a product database

- Heat pump/ERV AHRI certifications, Window/Storefront product data, etc.
- Can pick from this database to use as a placeholder while the actual product is still pending

What if the model fails?

- Look at WUFI's energy balance graphs
- Start with window SHGC
- Experiment with upgrades in areas of high impact

Team Communication

Project Manager

- Agree upon start dates and deadlines
- Settle project priorities
- · Highlight key documents and files needed
- Coordinate the review of PHIUS comments
- Point out which submittals need review during construction phase

Rater/Verifier

- Emphasize critical details that play a role in passing the model
- Provide shell area and building volume
- Confirm mechanical and envelope changes

<u>NEI</u>

In-house resources for all stages and separated by role. All participate in the design stage.

Role	Benefit
Project Manager manages the design team, internal plan reviews and communicates Phius requirements. Coordinates energy modeling, verifier participation – tracks the BIG picture	Manages multiple projects, up to date on Phius requirements, experience with multiple construction typologies
Energy Modeler completes feasibility study and modeling for the project; provides input to performance of building components	Very fast and accurate early in the process; <u>knows</u> Phius protocols and shortcuts
Phius Verifier is included in design to be familiar with project design intent when construction begins	Provides input on constructability and hits the ground running once construction starts

Scaling Phius Project Verification

- Verifier helps steer the final phase of project with the PM/CPHC
- Interaction with Consultant starts Pre-Construction & goes through construction completion and final Certification
- Dedicated Verifier for each project
- Reports to Consultant and team during construction
- Communicate high expectations and standards early
- GC and subcontractor training and buy in
- Mid-point Whole Building Test
- Finalizing Final Certification

Set Phius Expectations High and Early

- Verifier as Co-manager
- Review Pre Certification
- Project Team PHIUS Kickoff meeting
- Clarify Verification Process and Roles

							N	EWECO	LOGY
	Agend	la	• • •			· · · · · · · · · · · · · · · · · · ·	~~~		
•	Welco	me, Intro	duction a	and Meet	ing Goals	5			· · ·
•	Reviev	v of Prog	ram Requ	uirement	S				- - - - -
	• Pa • Er	issive Ho nergy Sta	use 2021 r, Indoor	AirPLUS,	WaterSer	nse, ZERH			
•••••	Testing	g and Ver	ification	· · · · · · · · · · · · · · · · · · · ·	102 - 11				
•	Reviev	v Checkli	sts						
•	Reviev	v of Deta	ils	· · · · ·	N.S.		A. S.	ECM	
		· · · · · · · · · · · · · · · · · · ·				123	2 WINE and R		
یں New Ec	ممريح ology, Inc.	ر المراجع Boston/Ha	ارر rtford/Prov	്പിഹ്രം idence/Bali		N. I.	rni minos		

Verification Information and Workflow

Community-Based Sustainable Development

Design/Specs => Revise $\overline{\lambda}$ Design Team GC and Subcontractors Re-Build Inspection • Verifier • PM/CPHC/Modeler Manufacturers **Fix Issues** Inspection fails, questions on install quality **Design/material** change, more training

Phius Verification Process and Inspections/Training

- Review List and Timing of Phius Inspections & Testing
- Phius, Energy Star, ZERH, IAP
- Trainings for GC and subcontractors
- Mockups

Phase	Description	Timing
Early Construction	Foundation, Slab, Slab Edge Insulation	As Installed
	Vapor barrier below slab, haunches, grade beams, and over top of foundation	As Installed, before concrete
	 Insulation inspection: Exterior wall cavity (confirm density) Exterior Continuous Rim joists Roof (incl. parapets, curbs, etc.) 	As Installed
Mid	Thermal bridges	As Installed
Construction	Duct leakage testing at roughHeating/cooling (if any)Ventilation (Witness Test)	Before boarding
	 Mid-point BD testing Compartmentalization (unit ready) Whole Building (building tight to weather) 	When ready

Verification Testing and Inspections Schedule

- 20- 40 Site Visits
- Critical Inspections/Tests:
 - Slab Insulation and VB
 - Mid-Point Whole Building Infiltration Test
 - Duct Testing at Rough
 - Final Whole Building Infiltration Test

Phase	Description	Timing
Construction Completion and Final Inspections	Final Whole Building Test	At Construction completion
	Central ventilation air balancing witness test	As completed
	In unit heating/cooling air flow Confirm room pressure balance	At Construction completion
	Document fixture and appliance equipment list	At Construction completion
	Confirm heating, cooling, ventilation, DHW, PV equipment installation	At Construction completion
	Confirm ERV power draw	At Construction completion, Post Cx, post TAB
	DHW temperature rise test	At Construction completion
	IR scan of building interior and exterior	At Construction completion

Contractor Trainings

Invite the following:

- Architect, Mechanical Engineer
- GC
 - Critical that site super and PM be present
- Subs
 - Critical that foreman working on the project is present
 - Air Sealing and Insulation, HVAC, plumbing, concrete

Review Thresholds and how they relate to each trade – do not over simplify

Criteria	Threshold
WB Air Tightness	0.06 cfm50/ft ² of enclosure
Compartmentalization	0.30 cfm50/ft ² of enclosure
Ventilation Flow Rate	Must be w/in 10% of design <u>Cannot</u> fall below minimum
Heating/cooling Flow Rate	Must be w/in 10% of design
Duct Testing	4% at rough (4 cfm25/100ft ²)
Return Balance	≤ 5 Pa
Hot Water Temp Rise Test	≥ 10 ° F Temp Rise in ≤ 0.6 gal

Contractor Trainings

- Hammer home air sealing
- Discuss whole building air barrier and compartmentalization boundary
- Provide field examples and relate to project details
- Provide examples of fails and successes

4 SHAFT WALL/FLOOR INTERSECTION AT TRASH CHUTE

Total Envelope Area = 53,158 SF

Contractor Trainings – Air Sealing Coordinator

1.

2.

3.

- Projects should designate an air sealing coordinator
- Example of a sign that works
 - All penetrations must be approved
 - GC putting subs on notice of critical importance of sealing penetrations

NOTICE TO ALL TRADE PARTNERS

- All penetrations between the building zones and the exterior (ceiling, slab, walls, etc.) must be approved by Bowdoin Construction's designated air sealing coordinator and project architect.
- Trade Partners are responsible for sealing any penetrations created by the installation of their building system / components and must use sealing methods pre-approved by Bowdoin Construction's air sealing coordinator and project architect.
- Trade Partners will be held accountable for the cost of repairing any unapproved and / or improperly sealed penetration through the building's air barrier system.

Mockups

- Mockups including:
 - Foundation and slab VB and insulation installations and penetrations
 - Wall assemblies including WRB, widow flashing, window installation, and transitions to foundation and roof
 - MEP Penetrations
- Make part of trainings
- Assess Constructability
- Assess Subcontractors

Inspections/Testing and Information flow

- First inspections reinforce expectations
- Emphasize execution is critical to performance and Pass/Fail of Phius certification
- On-site instruction to bolster contractor trainings
- Phius photo documentation
- Inspection Reports to PM and project team

OSHA? More importantly (?) damage to insulation

What Are We Looking For?

- Air Sealing, Air Sealing, Air Sealing
- Assemblies and insulation quality and Confirming R-Values
- Thermal bridging
- Confirmation of performance
- Infiltration Building and Units
- Duct leakage
- Ventilation
- Mechanicals, PV, Appliances, Lighting

Air Sealing – Compartmentalization and Envelope

- Unit and Building envelope
- Framing, pre-rock, panel joints, MEP penetrations, etc.
- Mid point Unit Blower door test

Insulation

- Slab, foundation, walls cavity, roof
- Continuous Exterior
- Confirming install quality, Design, R-Values
- Cellulose Density Reports

Thermal Breaks

- Confirming thermal break installs
- Infrared photos at Final

Duct Testing

- Heating/Cooling
- Central Ventilation
- Testing & Balancing
- Confirming Min. Flows

Mid Point Whole Building Infiltration Test

- Optional, but really shouldn't be
- Critical test of how envelop is performing
- MEP Penetrations
- Roof Penetrations/transitions
- Windows and Doors

Final Testing and Verification

- Ventilation Testing and Balancing
- Final Whole Building Blower Door Test
- Data Collection for PHIUS QA Workbook
- Complete Energy Star, IAP and ZERH Checklists
- PHIUS submission of QA Workbook, photos and documentation,
- PHIUS QA response
- PHIUS Re-submission

PHIUS+ Quality Control Workbook for Multifamily Projects - v2.2 (April 2019)

Project Name			Project Permit	PHIUS+ Project	PHIUS+ Rater/MF	Rater/MF Verifier	CPHC Name	CPHC Company Name	
Old Calam Phone of			Date	Registration #	verifier Name	Company Name		Mary Frederic	
Old Colony Phase 3C			6/12/2019	res	mark Norton	New Ecology Maclej Konleczny		New Ecology	
Street Address		City	State/Province	Zip Code	Country	Architect Company	General Contractor /	General Contractor / Builde	
		city			country	Name	Builder Company Name	responsible Individual	
1037	Aercer Street	Boston	MA Massachusett	2127	United States	TAT	Dimeo Construction	Tim Bernis	
Third-F	Third-Party balancing Third-party			HVAC	HVAC responsible	Ducted heating/co	HVAC Contractor must be		
firm hi	red by project?	e Individual	Company	Individual		ESTAR credentialed?			
			ir Conditioning ar	d Heating		Yes	YES		
Total #	Total #	Total # Stories	Do dwelling un	its occupy >8o%	Do dwelling units have individual heating,		Does solar energy provide	EPA ENERGY STAR / DOE	
Building	s Dwelling Units	per Building	of occupiable se	ft of buildings?	cooling, and wate	neating systems? >50% of DWH loa		ZERH Certification required?	
4	55	4	Y	25	Y	25	No	YES	

Welcome to the PHIUS+ Quality Control Workbook for Multifamily Projects!

Ventilation PHIUS+ On-site Quality Control

The Bate/MY lengther is responsible for verifying all dwelling unit ventilation it min on this worksheet. Ventilation air volume measurements may be verified by a third-party air balancing anatoxetra is no gas at Bate/MY Verifier verifies an initium of 1966, or 21, unit, whichever is lawer (that a test ton 3). The items on this worksheet that periods to alwelling unit ventilation must be verified with an individual worksheet for each individual dwelling unit. Alternatively, the Bater has the option to use the RESNET Sampling protocol to verify the dwelling unit ventilation refers.

For projects with common spaces, Rater shall be responsible for collecting air balance documentation for all common space ventilation systems, documenting the design ventilation rate and the final verified air balance rate.

1	Dwelling Unit Ventilation System Installation									Rater Verified	N/A			
1.1	System Type	ERV		Dwelling unit level, or sh	ared?	Shared	Manufacturer	ANNEXAIR	Model #	E-03-EW-	C-HR-SS-A	Yes		
	If shared, list u	If shared, list units shared with ALL UNITS, CENTRAL ERV												
1.2	Take photo/s of equi	pment for docun	ienta	ion folder								Yes		
1.3	All ventilation air inlets located at least 10' ("stretched-string distance") from known contamination sources										Yes			
1.4	Ventilation air inlets are at least 2' above grade and/or roof deck in climate zones 1-3 and at least 4' above grade and/or roof deck in climate zones 4-8, and are not a obstructed by snow, plantings, outdoor equipment, or other material at the time of inspection									are not	Yes			
1.5	Ventilation air comes directly from outdoors, not from adjacent dwelling units, common spaces, garages, crawlspaces or attics										Yes			
1.6	Outside air passes through a minimum MERV 8 filter prior to distribution													
1.7	Outside air filter is located to facilitate regular service by the occupant and/or building superintendent										Yes			
1.8	Air-sealed, class 1 vapor retarder shall be installed over all air-permeable insulation (such as fiberglass duct wrap) on ventilation ducts connected to B outside (Enter R-value)									4	Yes			
	Provision must be made to supply fresh air to all bedrooms in dwelling units. Dedicated ventilation ductwork is best practice. In the case of ventilation ductwork								vork					
	integrated with heating/cooling ducts, ERV should remain in balance under all fan speeds of the heating/cooling air handler, and said air handler fan must be								e	Yes				
1.9	designed to run continuously by default.													
	Bedrooms are pressure balanced to achieve a Rater-measured pressure difference of no more than 1Pa with respect to the main body of the house/apartment when								nt when					
1.9a	all bedroom doors are closed and just the ventilation system is operating at design speed													
1 10	10 Pater measured bathroom exhaust rater meate and of the following: >= 30 effect continuous as 50 effect intermittent									Var	Xannan an a			

Heating + Cooling PHIUS+ On-site Quality Control

Complete (pm for each piece of heating/cooling explaiment with air distribution. Additional heating/cooling a public for terms 4 and byong for example, if each apartment han its own heat a ump; complete one from for each apartment. Toury and part additional heating/cooling a buckless in ended. Ducted heating/cooling a viewane measurement amp be explicitly by third-party air balancing contracts to long as the flater/MF Verifier verifies a minimum of 10% of or 10, units, whichever is lower (but no less than 3). The items on this worksheet that pertain to dwelling unit heating/cooling system must be verified with an individual worksheet for each individual dwelling unit. Alternatively, the Rater has the option to use the RESNET Sample protectol to verific heading including coloning around measurement true.

for projects with common spaces, Rater shall be responsible for collecting air balance documentation for all common space ventilation systems, documenting the design ventilation rate and he final venified air balance rate.

#	Item	Rater Verified	HVAC Contract or Verified	N/A		
1	Heating/cooling equipment					
	System type (split heat pump, water source heat pump, fan coil, furnace,		Yes			
1.1	hydronic, etc.)	VRF				Í.
1.2	"Central" or "Per Apartment" distribution, ducted or ductless?	Per Apartmentl, ductless	Yes			
1.3	Manufacturer + model #	Mistubishi PURY-P216TSJMU-A	Yes			
1.4	AHRI certificate and/or manufacturer's detailed specs for heating/cooling equipm	Yes				
1.5	Photos of equipment (including model numbers) are included in documentation fo	Yes			1	

In Summary

- Aggressive code in Massachusetts
- Steep learning curve
- Feasibility is Critical
- Phius Guidebook IS critical
- Using templates streamlines modeling
- Keep It Simple
- Define a continuous workflow for entire team
- Set expectations high, early, and often
- Mid point whole building test should be mandatory

Thank You.

Maciej Konieczny CPHC/B, CEM, LEED AP BD+C, Homes Director of Building Technologies <u>konieczny@newecology.org</u> 617-557-1700 x7024

Nicholas Hernandez Energy Engineer hernandez@newecology.org 617-557-1700 x7047

Mark Norton PHIUS+, LEED, HERS Project Manager | New Ecology, Inc. <u>norton@newecology.org</u> 617-522-6919

PROJECT 1660

Old Colony Phase Three C

Boston, Massachusetts

BUILDING FUNCTION Multifamily PROJECT TYPE New Construction

construction completion 2021

status Final Certified ASHRAE CLIMATE ZONE 5A - Cool - Humid

int. conditioned floor area 49339 sq. ft.