BUILDINGENERGY BOSTON

Saving Energy in Hospitals with Passive House Techniques

Andrew Kozak (BR+A) Abbott Price (BR+A)

Curated by Keirstan Field and Tammy Ngo

Northeast Sustainable Energy Association (NESEA) March 29, 2023

SAVING ENERGY IN HOSPITALS WITH PASSIVE HOUSE TECHNIQUES

Increasing Efficiency, Protecting Assets and Reducing Operating Costs

Responsive buildings. Responsive people.

INTRODUCTIONS

Andrew Kozak, P.E. Principal, Engineer AEE Fellow, LEED AP akozak@brplusa.com

Abbott Price Sustainable Design Engineer CPHC, WELL AP, EMIT aprice@brplusa.com

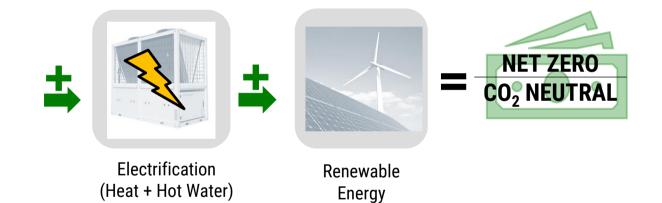
LEARNING OBJECTIVES

- Define changing local and national carbon and energy consumption regulations, and their intersection with healthcare requirements like ASHRAE 170.
- Recommend areas of design where Passive House strategies can be most impactful on overall energy consumption.
- Compare case studies of Hospital projects utilizing Passive House.
- Conclude how a Passive House principles and techniques can have a high impact on new Hospital design and construction projects.

GOAL:

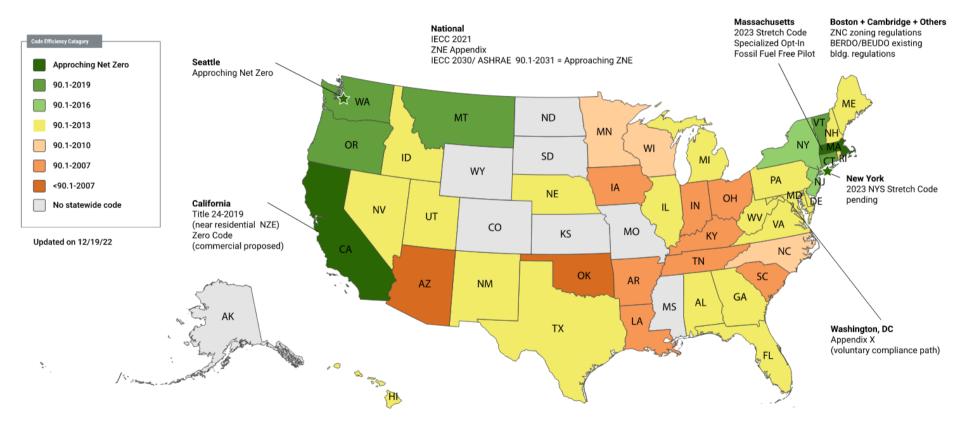
Improve energy performance of healthcare facilities while delivering quality care and improving patient outcomes.

STRATEGY:

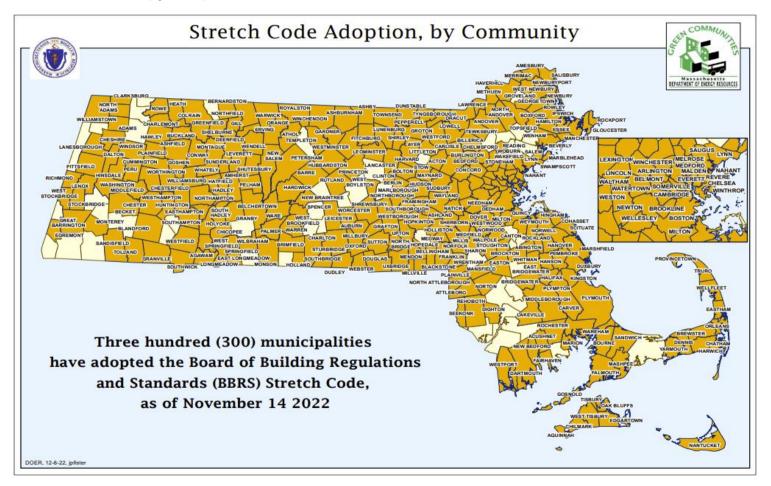

Build efficient buildings, to lower heating and cooling loads. Meet those heating and cooling loads with fully electrified equipment and renewable energy.

STRATEGY

Energy Efficiency



OVERVIEW


- 1. Context: Changing Regulation
- 2. Defining Passive House
- 3. Defining Healthcare Environment: Energy Intensive Features
- 4. Case Study 1: PH Strategies Employed
- 5. Case Study 2: Cost of PH
- 6. How to Future Proof: Best Practices

CONTEXT: CHANGING REGULATONS

NATIONAL ZNE CODE PRECEDENTS

Boston Carbon/Energy Regulation

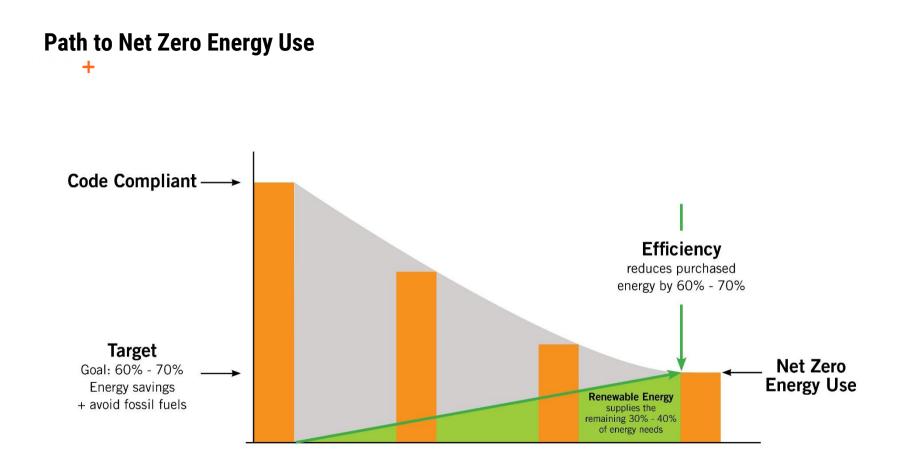
NEW YORK CITY: LOCAL LAW 97

NYC 80 x 50 80% carbon reduction by 2050

LOCAL LAW 97

2024-2029 limits will affect the 20% most carbonintensive buildings

2030-2034 limits will affect the 75% most carbonintensive buildings


Expensive penalties to those buildings exceeding the limits.

Local Law 154 - NYC Natural Gas Ban

2023 – buildings below 7 stories

2027 - all buildings

ASHRAE 227

Proposed Passive Building Design Standard

Authorities having Jurisdiction can adopt as a path to compliance using Passive House Building design principles.

- Envelope
- Heating and cooling equipment
- Ventilation
- Service hot water
- Lighting
- Plug loads

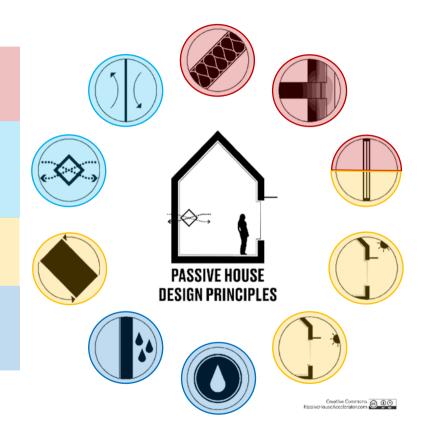
DEFINING PASSIVE HOUSE

WHAT IS PASSIVE HOUSE?

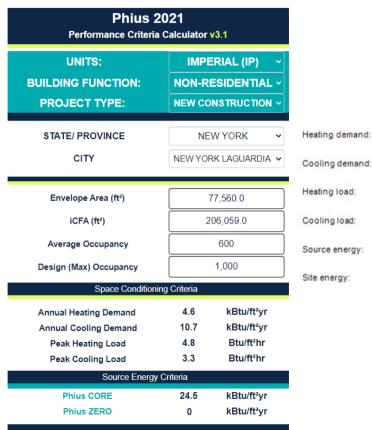
Design and construction concept – Focus on Balance Gains and Losses

Highest Energy Standard – PHI and PHIUS

Quiet, clean, healthy, comfortable


Images courtesy of PHIUS.org

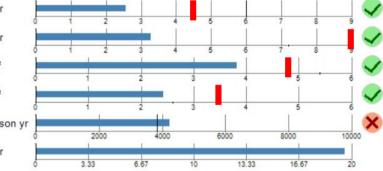
ENERGY BALANCE



PASSIVE HOUSE (PH) PRINCIPLES

- Thermal Control
 - High Performance Enclosure
 - Thermal Bridge Elimination
- Air Control
 - Airtightness
 - Balanced ventilation with heat and moisture recovery
- Radiation Control
 - High Performance Glazing
 - Shading and Daylighting
- Moisture Control
 - Material Moisture
 - Air Humidity

CERTIFYING BODIES


Cooling demand:
Heating load:
Cooling load:
Source energy:

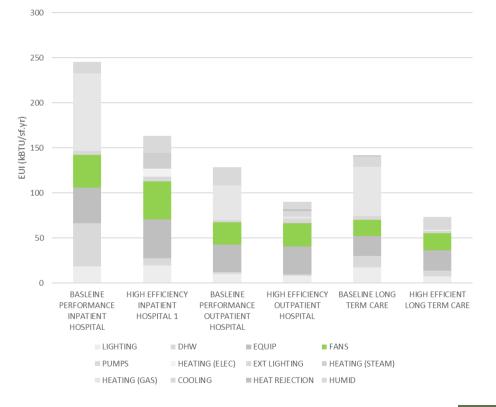
3.81 Btu/hr ft² 2.42 Btu/hr ft2

4,242 kWh/Person yr

19.59 kBtu/ft²yr

B71

DEFINING HEALTHCARE ENVIRONMENT: ENERGY INTENSIVE FEATURES

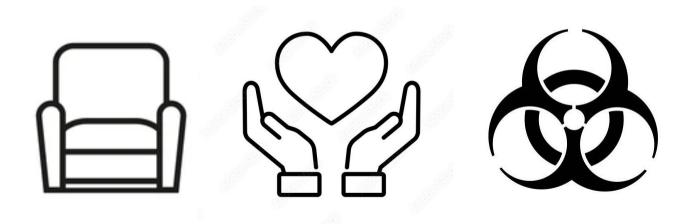

LARGEST CONTRIBUTORS TO HEALTHCARE ENERGY CONSUMPTION

-Equipment

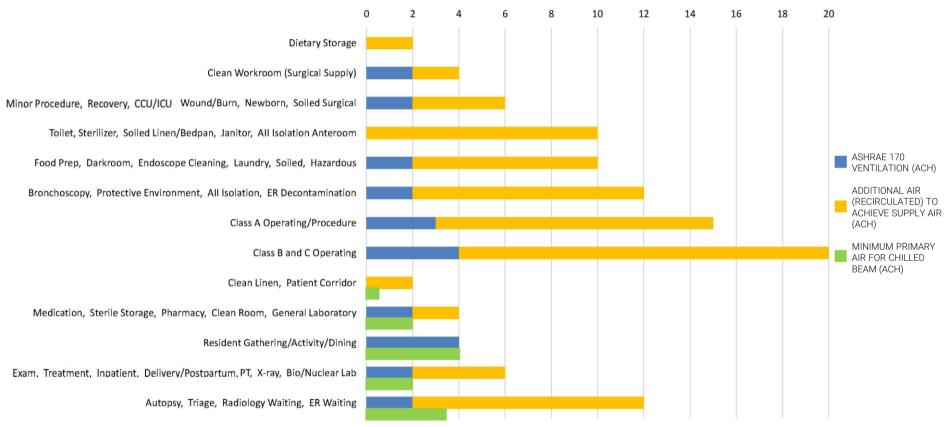
- MRI / CT/ Imaging equipment, etc.
- -Hot Water and Steam
 - -Domestic Hot Water
 - -Sterilization
- -Occupant Density
 - Patients, faculty and staff, families

-Ventilation

-ASHRAE 170 rates

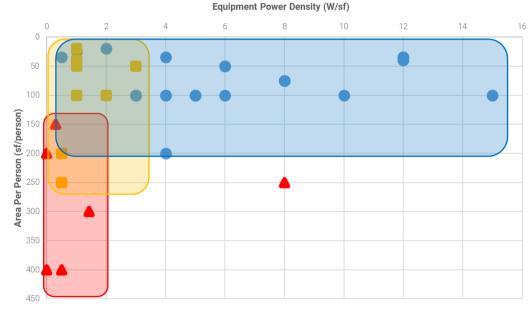


Typical Healthcare Buildings Baseline and High Efficiency


DEFINE HEALTHCARE TYPOLOGY & VENTILATION REQUIREMENTS

- Healthcare Typology: hospitals, in-patient, out-patient, nursing homes, psychiatric facility, etc.

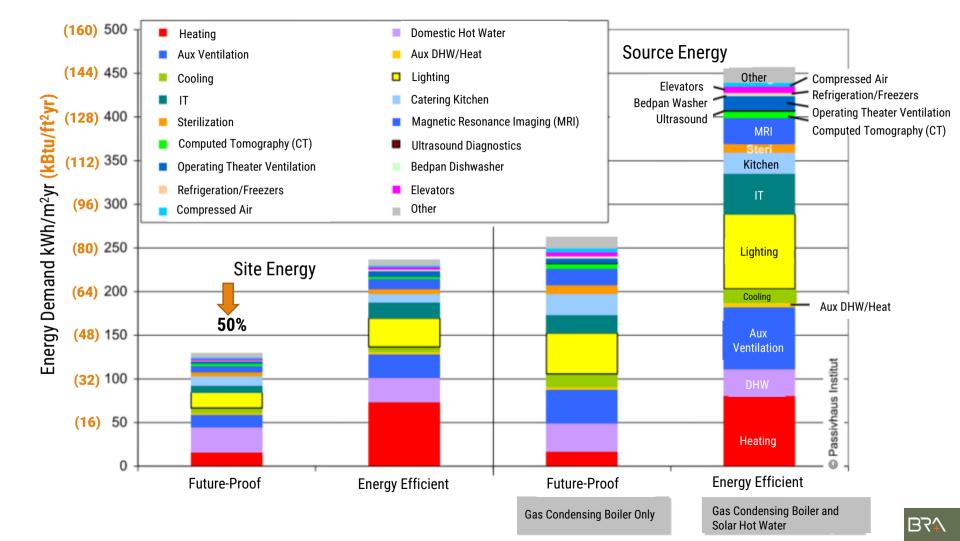
 ASHRAE 170: defines ventilation system design requirements for comfort, health, and contaminants in healthcare facilities.


ASHRAE 170 VENTILATION RATES

BENCHMARKING HEALTH CARE SPACE TYPES

Parameter	MF	Office	Healthcare
Ventilation	low	med	high
Occupant Density	low	high	med
Equipment Power Densities	low	med	high

Area Per Person vs EPD by Space Type


Hospital Multifamily Office

CHALLENGES APPLYING PH PRINCIPLES TO HEALTHCARE

Challenge	Heating Limits	Cooling Limits	Source Energy
ASHRAE 170 Ventilation	Х	Х	Х
Occupant Density		Х	
Internal Gains		Х	Х
High Window-to-Wall Ratio	Х	Х	
Large Service Hot Water Demand	Х		Х

CASE STUDY 1: PH STRATEHGIES EMPLOYED


CASE STUDY 2: COST OF EMPLOYING PH

REDUCING LOADS

ENCLOSURE

MODEL INPUT PARAMETER	HIGH EFFICIENCY CASE	PASSIVE HOUSE CASE		
Wall Assembly - Above Grade	Face brick: U-0.043	Face brick: U-0.030		
Vertical Glazing - U-Value	0.19 Curtainwall	0.172 Curtainwall		
Air Infiltration	0.083 INF-ACH	0.035 INF-ACH		
VENTILATION ENERGY RECOVERY				
MODEL INPUT PARAMETER	HIGH EFFICIENCY CASE	PASSIVE HOUSE CASE		
Exhaust Air Energy Recovery	Enthalpy wheel + Desiccant wheel	Dual core		

ANNUAL SITE-ENERGY USE INTENSITY BY END-USE

LOW CARBON PRINCIPLES IN ACTION CONFIDENTIAL LONG-TERM CARE FACILITY *Life Cycle Cost Analysis (LCCA)*

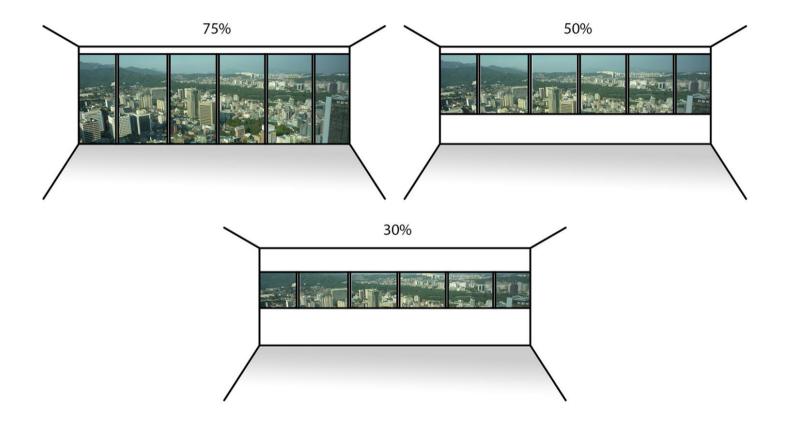
	Baseline	Baseline no PV	Alternate	Alternate no PV	CCCC.	Bunness and	- 00.0.0
All Values in \$ Millions	Current Design with Solar PV	Current Design without Solar PV	Improved Envelope with Solar PV	Improved Envelope without Solar PV		Hanna a Real	
TOTAL CONSTRUCTION COSTS	\$287.7	\$286.2	\$288.0	\$286			M. See. Er St.
ENVELOPE UPGRADES	-	-	\$1.6		ITIONAL SAVING		
MEP SAVINGS	-	-	-\$1.4				Start Walter
SOLAR PV (G40 - SITE ELEC UTILITIES)	-\$1.5	-\$3.0	-\$1.5		OUNTING FOR RI		11
40-YR TOTAL OPERATING COSTS	\$31.1	\$31.8	\$26.0		BON EMISSION F		
40-YR MAINTENANCE + REPLACEMENT	\$16.3	\$16.2	\$16.3	LOC	AL REGULATION	S LIKE LL97	
40-YR ENERGY	\$14.8	\$15.5	\$9.7	\$10.5			
40-YR DEMAND CHARGE (*TBD)	2nd Highest	Highest	Lowest	2nd Lowest			
40-YR NET PRESENT COST	\$317.3	\$315.0	\$312.7	\$310.4			
40-YR NET PRESENT COST DIFFERENCE	\$0.0	\$2.3	\$4.6	\$6.9		11111	
PERCENT DIFFERENCE FROM BASE	-	0.7%	1.4%	2.2%		State of the second	al d
LBS CO2e PER SF (ISO NE 2019)	11.8	12.4	7.8	8.4		- MAN	1 4 3
KG CO2e PER SF (ISO NE 2019)	5.4	5.6	3.5	3.8		te - Mittan	Nº.
40-YR CO2e EMISSIONS (KILOTONNES)	70,765	74,423	46,636	50,294		Carlos and a second	1200
40-YR CO2e EMISSIONS DIFFERENCE		3,658	(24,129)	(20,471)			

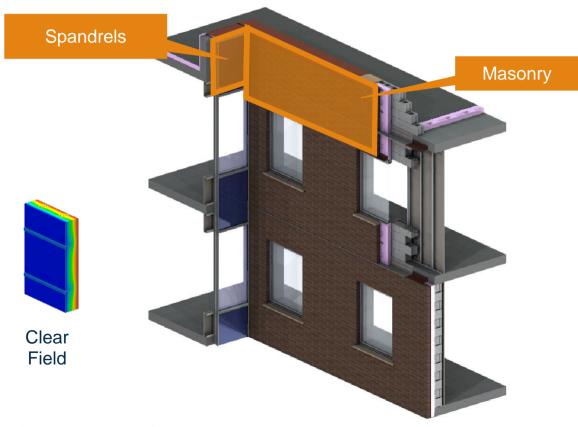
ntil

CERTIFYING BODIES -BALANCING PERFORMANCE AND COST

PHIUS BUILDING PROTFOLIO DATA:

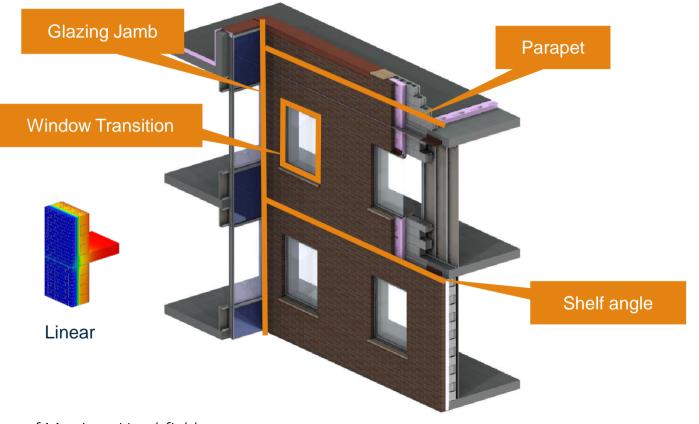
- Phius buildings perform up to 85% better than conventional buildings.
- Building to the Phius standard costs only 3-5% more than conventional building methods for a conventional home
- Larger projects benefit from the economy of scale:
 - multifamily passive building typically only costs 0-3% more than a building built to an energy star baseline.


PHIUS.org


PASSIVE HOUSE STRATEGIES AND BEST PRACTICES

ENCLOSURE

RETHINKING FENESTRATION TO WALL RATIOS



THERMAL BRIDGING

Images courtesy of Morrison Hershfield

THERMAL BRIDGING

Images courtesy of Morrison Hershfield

GENERAL BEST PRACTICES

HEATING, AND HOT WATER BEST PRACTICES

Heating

- Don't throw away BTUs

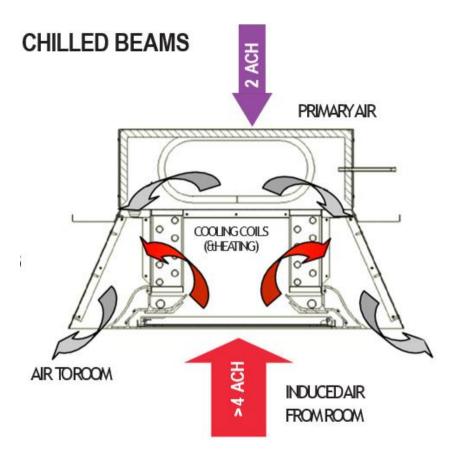
- Ventilation energy recovery
- Low temp waste heat + heat pumps

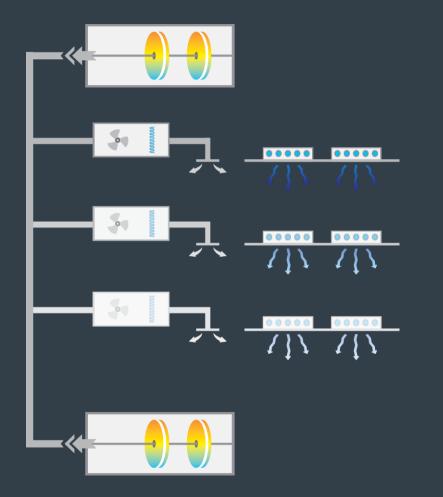
- Meet with electric equipment

- Avoid steam generation
- Heat Pumps

DHW

- Reduce Water Use: Water saving fixtures
- **Reduce distribution losses**: with efficient layouts
- Wastewater heat recovery
- Meet with Electrified Sources:
 - Solar thermal
 - DHW HP


COOLING BEST PRACTICES


- Regulate Cooling Load

- Reduce internal heat gains
- Reduced solar loads and shading
- Thermal mass (exposed concrete ceilings)

- Use Efficient Equipment

- Chilled beam
- Night ventilation to help manage humidity
- Avoid ventilation pressure losses
- Efficient fans
- Evaporative cooling within ventilation unit
- Place exhaust or chilled water-cooling circuit at the source of internal heat gains

VENTILATION BEST PRACTICES TO REDUCE LOADS

– Provide efficient energy recovery ($\ge 80 \%$

sensible and >%75 latent)

- Simplify and shorten ventilation duct network
- Avoid unnecessarily high-pressure losses
- Demand control ventilation

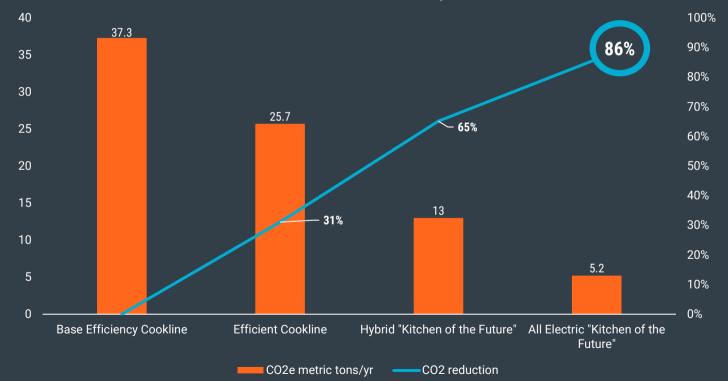
LIGHTING BEST PRACTICES

Maximize Daylight Utilization.

 In occupied spaces the building design should strive for good daylighting conditions.

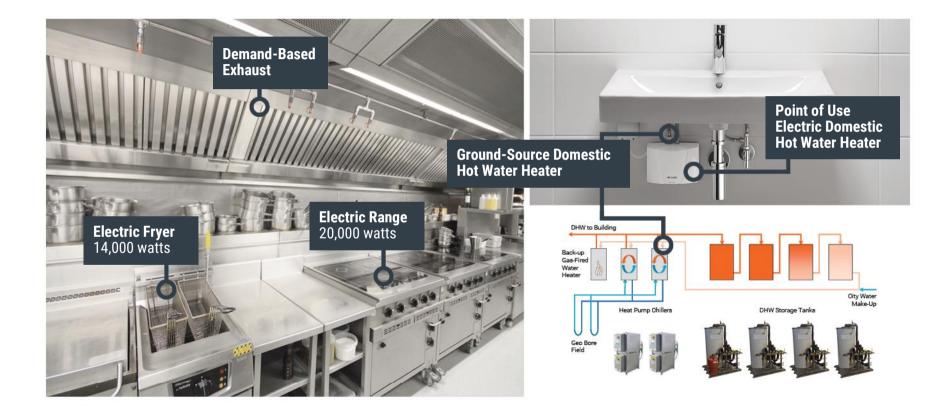
Lighting Design

- Exceed standard reflectance values of walls and ceilings.
- Specify illuminance levels within rooms
- Set targets and limits at an early stage
- Special attention to lighitng controls



IT BEST PRACTICES

 Servers with higher temperature tolerance should be used to reduce cooling load.


– Recover server waste heat

COMMERCIAL KITCHEN EMISSIONS

Commercial Kitchen CO2 Impacts

ALL ELECTRIC KITCHEN

HEALTHCARE BEST PRACTICES

MEDICAL APPLIANCES AND DEVICES BEST PRACTICES

Medical and professional equipment, that is currently available, and improved processes offer savings potentials of more than 30%

STERILIZATION AND GLASS WASH BEST PRACTICES

– Washer-disinfectors largest energy end use is **heating water and steam**.

- Solution: economical use of water.

- Tank systems allow reuse of the hot deionized water from the disinfection phase.
- Wastewater heat recovery + heat pump system

- MRI Carefully review spec sheets
 - Can significantly reduce cooling load
 - New technology using superconductors shows promise for energy reductions.

CT

- Compared to previous generation, consumption of current devices is **30% lower**.
- Engage standby mode when not in-use

OTHER EQUIPMENT

- Medical coolers Adjust Set Points
- Fume Hoods: Lower VAV Fume Hood Sashes or Automatic Controls
- Solid state lasers> gas lasers.
- Turn off Biosafety cabinets (BSC)
- Reduce compressed air

CONCLUSIONS

CONCLUSIONS

GOAL: target future proof healthcare facilities while delivering the same quality of care and improving patient outcomes.

- Prioritizing envelope efficiency and load reduction strategies to get operational cost savings and meet decarbonization goals.
- Mitigating carbon risk and future liability associated with inefficient facilities can have significant lifecycle cost savings, depending on utility rates.
- With early planning and integrated design, best-in class future-proof healthcare facilities can be built at less than 1% construction cost premium.

THANK YOU

Questions?

Responsive buildings. Responsive people.