BUILDINGENERGY BOSTON

Tales from the Trenches: Passive House Ventilation Commissioning Roadblocks

> Michal Schmidt | PHIUS + Verifier | CPHT Luis Aragon | EIT (Steven Winter Associates)

> > **Curated by Bart Bales**

Northeast Sustainable Energy Association (NESEA) March 28, 2023

Learning Objectives

- 1. Discuss common passive house ventilation system designs, layouts, and components pertaining to the performance and field installations.
- 2. Demonstrate through examples **common problem areas** related to implementing high-performance ventilation systems.
- 3. Recommend ways to design for best ventilation performance based upon lessons learned.
- 4. Describe the **Passive House certification criteria** and the actual performance necessary for ventilation systems to be within compliance.

Passive House Basics & Relevance

Passive House In the News

Passive House Required for Multi-family equal to or greater than 12,000 square feet:

- Effective Jan 1, 2023: Passive House required for buildings up to 5 stories
- Effective Jan 1, 2024: Passive House required for buildings 6 stories and above

- Over 6,500 Passive House Units in Development in MA
- Passive house Growth: 6+ unit multi-family currently over 6,500 units in the Mass Save® incentive program pipeline versus less than 20 in 2017.
- 133 MA firms have Certified Passivehouse consultants, \$1.7m for Mass Save training of 3,600 people in 2022-2024.
- Significant Mass Save incentives available for design/feasibility and construction up to \$3,000 per unit.

https://phmass.org/buildingcode/

ELEMENTS OF A LARGE MULTIFAMILY PASSIVE HOUSE BUILDING

Credit: Handel Architects

Introduction – Ventilation Recommendations and Requirements

Energy Efficiency:

- Recommend ERV HRV fan motors consume 0.765 W/cfm or less at the highest power setting
 - Verify ERV/HRV wattage at final

Balancing Requirements:

- Supply and exhaust flows are within 10% of each other (at the unit)
- A targeted air change rate between 0.30 and 0.50 air changes per hour (ACH)
- Minimum flow rates must be met in apartments
- Supply and exhaust flows are +/- 15% or 15 CFM of design values (in apartments)
- Third-party (certified air balancing professional e.g. NEBB, AABC)
- Required pre-meeting with TAB contractor to discuss expectations

Cx Process & Relevance in PH Buildings

Project Flow

Energy Code Commissioning (Cx)

Exceptions: The following systems are exempt:

- Mechanical systems and service water heater systems in buildings where the total mechanical equipment capacity is less than 480,000 Btu/h (140.7 kW) cooling capacity and 600,000 Btu/h (175.8 kW) combined service water-heating and space-heating capacity.
- 2. Systems included in Section C403.3 that serve individual *dwelling units* and *sleeping units*.

Low Cost	Rapidly I	ncreasing Cost	t	High Cost		
Major Influence	Rapidly I	Decending Infl	uence	Low Influence		
Cost Of O	nanges	000	ortunity for Influen	Ce		
Planning and	Schematic	Design	Construction	Construction		

Programminig Design Development Documents Construction Figure 1. Cost of Change vs. Opportunity to Influence, Edith Cherry, FAIA, ASLA a

Benefits of Commissioning

TAB, Shop Drawings and System Leakage

Testing and Balancing – Comparing Flow Hoods

Key Findings of LBNL Report - 47382

"Extensive laboratory tests and several field tests show...Their RMS errors are typically in the 20% to 30% range compared to accuracies of 10% or better required for most distribution system diagnostics. In particular, they are inadequate for use in estimating duct leakage, air handler flow and individual register flows for room load and comfort."

"The laboratory results for the reference active flow hood show an RMS error of only 2%."

Testing and Balancing - Reporting

Manufacti Model:	urer:						
ocation:		Apt 6C Closet					
			Grille		CFM		
	Area	Supply/					
Drawing	Served	Return	Type	Size	Design	Actual	
27	Apt 6C	ERV Supply	SWR	6x4	15	15	
28	Apt 6C	ERV Supply	SWR	6x4	15	15	
30	Apt 6C	ERV Supply	SWR	6x4	15	15	
32	Apt 6C	KX	SWG	6x6	25	25	
33	Apt 6C	ТХ	CG	6x6	20	20	

Let's talk about shops...

Shop Drawings – Review Physical Access

• For flow traverses, sometimes the space is there and sometimes not

System Leakage Examples

Duct Leakage

Accessory Leakage

Equipment Leakage

Duct Sealing using Aerosolized Sealant

- Seals ducts from the inside
- Pressurized aerosolized particles are forced through the duct systems and build up at leak locations.
- Can seal leaks up to ½" size
 Before After

Aerosolized Sealant – Volumetric VS SMACNA Duct leakage Standard

Recommended 3% Fractional Leakage Method

	ERV-Unit 1		ERV-Unit 2	
	Supply	Exhaust	Supply	Exhaust
Design Flow Rate (CFM):	450	450	465	465
3% Volumetric Leakage %	3%	3%	3%	3%
(SMACNA CL 8) % Leakage of design flow	32%	19%	18%	31%
(SMACNA CL 2) % Leakage of design flow	8%	5%	4%	8%

Leakage Impacts on PHIUS WUFI Energy Model

Duct Leakage – Cx Example

Table 2. Airflow Data from Five ERV Units Before and After Cx										
	ERV-1		EF	RV-2	ERV-3		ERV-4		ERV-5	
	Supply	Exhaust								
Design Flow Rate (CFM):	795	795	450	450	465	465	2240	2240	1470	1470
Round 1 T&B % System Leakage:	12%	15%	3%	3%	12%	32%	12%	12%	11%	23%
Average System Leakage Before Cx:	14%									
Final Commissioned TAB % System										
Leakage:	15%	15%	3%	3%	0%	0%	0.4%	9%	1%	1%
Average System Leakage After Cx:	5%									

9% Leakage reduction from early Cx engagement

ERV/HRV Controls & Interlocks

Steven Winter Associates, Inc.

26

ERV Sequences & Controls

- Constant Flow vs Variable Flow
- Key Setpoints:
 - Airflow
 - Static pressure
 - Supply Air Temperature
- Other Setpoints:
 - CO2 concentration
 - Schedules

Steven Winter Associates, Inc.

Example 1 – Fictitious TAB reports

Air flow

Extract air

Example 1 (cont.) – Proper reporting

Design airflow in the system data sheets reflect the sum of all diffuser design ratings. These ratings were provided in the mechanical drawings.

Static pressure setpoint: 0.51"

Steven Winter Asso

Example 2 – Lighting ctrls. & Ventilation ctrls.

Example 1 (cont.) – The way it should go

Example 3 – Complicated controls?

ERV Controls – Heat Pump Interlocks

• Who is responsible for setting these up?

ERV Controls – Heat Pump Interlocks

- Supply air F
- Outdoor air F
- Supply air set point F
- Extra reg. seq. 1 heat regulator level %
- Re-heat control signal output %
- RX heat exchange level %

How could we avoid these issues?

Clear & realistic sequences of operation

- Early Design Reviews.
- Clearly defined roles
 - Installer + Supplier + Manufacturer + CxA

Clear expectations

- The job is done when...
- Warranty periods

Operations & Maintenance

O&M and Ongoing Cx

- Proper training
 - Training requirements come from the spec
- Ongoing Cx
 - Test plans templates
- Central ERVs w/ DX
 - 3 or more days for tuning

Live-in Building Superintendent

Operations and Maintenance

Operations and Maintenance

Conclusion

Conclusion

- Traditional and typical specifications for duct leakage may not be enough for high-performance buildings
- Communicate design AND construction expectations through specifications reinforced with on-site training
- Communicate project nuances and PH requirements early and often
- Engage CxA early in the design phase
- Push for clear and realistic sequences of operation
- Consider operations and operators during the design phase

Trust but Verify

Listen to Our Podcast

 Buildings + Beyond explores how we can create a more sustainable built environment by focusing on efficiency, accessibility, and health.

Buildings +Beyond (

AUGUST 26

Construction Diaries: Lessons Learned From SWA's Inspection... One of the main drivers behind a successful building project is third-party inspection an...

SEPTEMBER 30 Construction Diaries Part 2: Tips for Young Professionals

As a continuation of our last episode, Construction Diaries: Lessons Learned Fro...

Subscribe on any podcast platform, including Apple Podcasts and Spotify.

Buildings Beyond podcast

swinter.com/podcast

Questions?

Luis Aragon: <u>laragon@swinter.com</u>

Michael Schmidt: <u>mschmidt@swinter.com</u>