Refrigerant Phase-Outs
Explained and Untangled
March 13th 2024

Mark LaFrance
Principal
HTS New England

JS Rancourt
Principal
DXS New England
We are: HVAC Manufacturer’s Representatives & a Building Automation contractor

AHUs (catalogued – modular – full custom), ERVs, Chillers, ASHP & WSHP Chillers, Fans, Lab exhaust, Lab energy recovery, pre-fab plants, terminal equipment, humidification, air purification, etc.

www.hts.com

Specialized in VRV/VRF, ASHPs, VRV driven ERVs and AHUs, VRV controls

www.dxseng.com

Largest Daikin VRV rep in North America!

Building automation, energy and emissions monitoring and reporting, fault detection systems, and lab energy recovery controls

www.controltechinc.com
All-Electric Multi-Residential (New)

- Individual ASHPs for each suite
- VRV driven Passive House ERV

280 lbs R-410a
All-Electric K-12 (New)

VRV driven custom central VAV AHUs
VRV Heat Pump condensing units

600 lbs R-410a
Net Zero School Cambridge (New)

Geothermal
Water-source heat pump chillers
Custom AHU
Electrification of Commercial Office (Retro)
VRV driven semi-custom modular AHUs
VRV Heat Pump condensing units

720 lbs R-410a
Typical All-Electric Commercial Office (NEW)

- Ducted semi-centralized VRV systems
- ASHP VRV driven packaged Rooftop ERVs

850 lbs R-410a
Agenda

• Part 1 – How refrigerants fit into decarbonization
• Part 2 – The science of refrigerants, and why it matters
• Part 3 – Codes, standards, and flammability
• Part 4 – Phase-outs of refrigerants in HVAC equipment
• Part 5 – Where we are today with equipment
Agenda

• Part 1 – How refrigerants fit into decarbonization
• Part 2 – The science of refrigerants, and why it matters
• Part 3 – Codes, standards, and flammability
• Part 4 – Phase-outs of refrigerants in HVAC equipment
• Part 5 – Where we are today with equipment
What is more important in reducing Emissions?

The answer is: Both are important, but make sure decisions consider overall lifetime emissions impact, and not just impacts from one potential source (such as refrigerants).

Refrigerant choice can have major impacts on overall HVAC system efficiency, their ability to heat, complexity, and resulting emissions.
Looking at refrigerant emissions in isolation

Important to address!
Life Cycle Climate Performance

- Building LCCP Study using 3rd party energy model
- 8 Story multi-rez building (Boston)
- All-Electric HVAC systems
 - VRF vs ASHP Chiller
 - ASHP DHW
 - VRF driven ERVs
- Deep analysis of grid emissions
 - Correlations to time-of-day & year
 - Correlations to weather
 - Overlaid onto TMY3
 - Multiple Grid phasedown scenarios
- Multiple refrigerant leak rates and emission scenarios
Life Cycle Climate Performance

- Building LCCP Study using 3rd party energy model
- 8 Story multi-rez building (Boston)
- All-Electric HVAC systems
 - VRF vs ASHP Chiller
 - ASHP DHW
 - VRF driven ERVs
- Deep analysis of grid emissions
 - Correlations to time-of-day & year
 - Correlations to weather
 - Overlaid onto TMY3
 - Multiple Grid phasedown scenarios
- Multiple refrigerant leak rates and emission scenarios
Agenda

• Part 1 – How refrigerants fit into decarbonization
• Part 2 – The science of refrigerants, and why it matters
• Part 3 – Codes, standards, and flammability
• Part 4 – Phase-outs of refrigerants in HVAC equipment
• Part 5 – Where we are today with equipment
Why can’t we just find or create lower GWP refrigerants for heat pumps?

- Flammability and GWP are essentially inversely proportional

GWP vs Flammability

- More Fluorine results in more stable chemicals. Great to reduce flammability, bad for GWP as it doesn’t breakdown
Most refrigerants can and will combust when put into a high-energy situation such as a fire (ie. R-410a)

There are (4) flammability classes, and no class called “non-flammable”

1: Flame propagation Test (at testing standard of 140F)
- No flame propagation = Class 1

2: How much (needed to ignite), how hot, how fast
- Concentration needed to ignite (LFL) < 0.10 kg/m³ = Class 3
- Heat of Combustion HOC > 19 kJ/g = Class 3
- Otherwise, high LFL and low HOC = Class 2
- If burn velocity < 10 cm/sec ~ 20 ft/minute = Class 2L
A1 vs A2L Flammability comparison

https://www.ahrinet.org/system/files/2023-06/AHRI_SRTTF_Low_GWP_Refrigerants_FAQs_0.pdf
R-410a Alternatives
(high pressure, low GWP refrigerants for heat pumps)

R-410a
(non-proprietary)

- **R-32**
- **R-125**

Class: A1

Most efficient & highest capacity high-pressure refrigerant¹

R-32
(non-proprietary)

- **R-32**

Class: A2L

High fluorine content refrigerant with low performance but high stability resulting in the A1 classification

R-454B
(proprietary)

- **R-32**
- **R-1234yf**

Class: A2L

R-32 is simply the removal of R-125 from R-410a, resulting in a pure refrigerant with the best performance across high pressure refrigerants¹

R-32 mixed with HFO R-1234yf reduces the GWP but results in a blend with a slight glide, and a slight reduction in capacity and efficiency

¹. https://www.nature.com/articles/ncomms14476/figures/3
Water-Cooled Chillers:
Low / Medium pressure refrigerants

Air-Cooled Chillers:
Medium / High pressure refrigerants

44F Supply Water

85F Condenser Water

41F

95F Ambient

53F

R-123 (GWP 79)
R- 1233zd (GWP 1)*
R-134A (GWP 1430)
R- 513A (GWP 573)
R-515B (GWP 292)
R-1234ze (GWP 1)
R-410A (GWP 2088)
R-454B
R-32
(GWP 466)
(GWP 675)
Air-Source **Heat Pump Chillers:** High pressure refrigerants

- 120F Supply Water
- 113F Refrigerant (condensing temp)
- 124F
- -4F Ambient

Air-Source **Heat Pump VRV / Splits:** High pressure refrigerants

- 135F
- -22F Ambient

Refrigerants:
- R-410A (GWP 2088)
- R-454B (GWP 466)
- R-32 (GWP 675)
Agenda

- Part 1 – How refrigerants fit into decarbonization
- Part 2 – The science of refrigerants, and why it matters
- Part 3 – Codes, standards, and flammability
- Part 4 – Phase-outs of refrigerants in HVAC equipment
- Part 5 – Where we are today with equipment
Application / Design / Installation rules

Who? Who makes the rules on which refrigerants can be used, how much can be used, where they can be run, and any other safety requirements?

- **EPA?** Yes, via phase out rules & SNAP rules
- **UL?** Yes, as the equipment safety certification body
- **ASHRAE?** Yes, with standards that classify and apply refrigerants
- **ICC / IMC?** Yes, as the model building code, deciding standards language
- **State Building Code?** Yes, deciding which model code and amendments
- **AHJ?** Yes, often referred to in codes, enforcement
- **Manufacturers?** Yes, new UL often refers to manufacturer instruction and data
- **Project Team?** Yes, code & standard interpretation, overall advice
700 GWP (for most HVAC systems, 2025 & 2026)

State Building Code (with amendments)

ASHRAE
AHRI
ASTM
Etc.

ICC
IMC/IBC/IFC/IRC

UL
UL 60335-2-40 2022

A2L

Manufacturers
(IOMs, data)

PROJECT TEAM

EPA

AHJ Inspectors

Over Simplification!
Application / Design / Installation rules

What? What are the rules on what refrigerant can be used, how much of it, any extra safety requirements or rules etc.

1. Which language / rules is the project bound by?

 Which version of IMC? Which version of ASHRAE? UL 60335-2-40. * Building Code Dependent *

2. What is the exposure of the refrigerant?

 Where is the refrigerant in the building, and where can it leak.
 Outside? Machinery room? Occupied space?
 Dictates allowable refrigerant quantities and other requirements.
Refrigerant location & exposure

- Refrigerant contained outdoors
 - Hydronic distribution
- Refrigerant in machine room
 - Hydronic distribution
- Refrigerant contained in packaged terminal units
- Refrigerant contained outdoors
 - Ductwork distribution
- Refrigerant contained in small distributed units
- Direct distribution of heat through building with refrigerant

- Efficiency
- Emissions
- Cost
- Tenant Metering
Flammability & ASHRAE

- **ASHRAE 34**: Classification standard for refrigerant
- **ASHRAE 15**: Application standard for refrigerant systems with a focus on health & safety
 - 3-year cycles, latest edition: 2022 (ASHRAE edition ≠ building code!)
 - Increased adoption of low flammability refrigerants over the last decade
 - Increased alignment with IEC standards (i.e., Europe) that are much further along

- **2016**: No allowance for A2Ls in direct systems

- **2019**: Some allowances for A2Ls in direct systems, up to ~4lbs due to unclear detection requirements. Fire-rated shaft requirements, pipe shield requirements.

- **2022**: Clear allowances for A2Ls in direct systems, with some mandatory and optional safety mitigation measures that limits leakage (major environment side affect). Removal of fire-rated shaft requirements (if RCL is met), removal of pipe shields, RCL increase etc.

IMC Adoption

- IMC 2018: Yes
- IMC 2021: Yes
- IMC 2024: Some, missing key sections.
ASHRAE Standard 15 - 2022 & A2L's

- The ASHRAE Standard 15 committee did a fantastic job! Released Fall 2022
- The standard has multiple long-awaited clarifications and definitions, especially for the distributed DX systems (VRF)
- Results in increased safety for VRF systems
- Results in a reduction in refrigerant leakage and associated emissions due to the added safety mitigation measures
- UL 60335-2-40 2022 has adopted most provisions
- IMC 2024 missing most key A2L related sections

https://www.ashrae.org/technical-resources/bookstore/ashrae-refrigeration-resources
ASHRAE Standard 15 - 2022 & A2L’s

- Refrigerant Concentration Limit (RCL) still applies
 - Ensures safety in case of a refrigerant leak
 - Toxicity, oxygen deprivation and flammability are analyzed to determine RCL

- **RCL comparison:** R-410a (A1) vs R-32 / R-454b (A2Ls)

1. **Toxicity:** All refrigerants are Class A, Low toxicity.

2. **Flammability:**
 - R-410a: RCL not limited by flammability as it is Class 1
 - R-32 / R-454b: RCL of 25% of LFL as they are class 2L refrigerants

 \[
 \begin{align*}
 R-32 &= 4.8 \text{ lbs / mcf} \\
 R-454b &= 3.1 \text{ lbs / mcf*}
 \end{align*}
 \]

3. **Oxygen deprivation** *(26 lbs / mcf for refrigerants denser than air)*
 \[
 \begin{align*}
 R-410a &= 26 \text{ lbs / mcf} \\
 R-32 &= 26 \text{ lbs / mcf} \\
 R-454b &= 26 \text{ lbs / mcf}
 \end{align*}
 \]

As per IMC 2024: https://codes.iccsafe.org/content/IMC2024P1/chapter-11-refrigeration
ASHRAE Standard 15 - 2022 & A2L’s

- Refrigerant Concentration Limit (RCL) still applies
 - Ensures safety in case of a refrigerant leak
 - Toxicity, oxygen deprivation and flammability are analyzed to determine RCL

- **RCL comparison**: R-410a (A1) vs R-32 / R-454b (A2Ls)

1. **Toxicity**: All refrigerants are Class A, Low toxicity.

2. **Flammability**:
 - R-410a: RCL not limited by flammability as it is Class 1
 - R-32 / R-454b: RCL of 25% of LFL as they are class 2L refrigerants

 \[
 \begin{align*}
 R-32 &= 4.8 \text{ lbs / mcf} \\
 R-454b &= 3.1 \text{ lbs / mcf} \\
 \end{align*}
 \]

3. **Oxygen deprivation** *(26 lbs / mcf for refrigerants denser than air)*
 - R-410a = 26 lbs / mcf
 - R-32 = 26 lbs / mcf
 - R-454b = 26 lbs / mcf

As per IMC 2024: https://codes.iccsafe.org/content/IMC2024P1/chapter-11-refrigeration

• All A2L VRV/VRF will need refrigerant detection in all spaces
 • Daikin: factory mounted detectors in fan coils
 • Result:
 • Increased safety (R410a had no detection)
 • Increased RCL from 4.8 (R-32) to 9.6 lbs / mcf
 • R-32 also has ~30% less charge than R-410a

• Safety Shut Off Valves (SSOVs) can be used to reduce the “releasable charge” of the system
 • Daikin: factory mounted safety shut off valves
 • Result:
 • Reduced safety risks (upon a leakage event)
 • Reduced emissions (upon a leakage event)
 • Simplification of R410a to R32 VRV retrofits

• Definitions and calculations for connected spaces

• *Potential* need for fired rated and naturally ventilated refrigerant pipe chases for buildings over 2 stories

• Review pipe and branch selector box locations

• Proper use of VRV/VRF software for RCL compliance

• No ignition sources in the airstream (listed electric heat okay)

• **Overall result for VRV/VRF systems under ASHRAE 15 2022 with R-32:**
 • Applicability to smaller spaces
 • Major reduction in refrigerant leakage & emissions during a leak event
 • 30% less refrigerant, 68% lower GWP, SSOVs to limit leakage
 • Ability to identify and locate leaks early (via detectors) *Combined with VRV IOT monitoring!*
 • Increased safety

https://www.ashrae.org/technical-resources/bookstore/ashrae-refrigeration-resources
Some States making this change legislatively, others through codes (amendments to IMC 2021)

What does “acceptance” and “allowance” of A2Ls actually mean?
- Depends on which language is adopted by each State / AHJ
- Based on language, allowance and concentration depends on the location, exposure and quantity of refrigerant

• Not expected to make this change legislatively, but through code changes & BBRS

• 10th Edition code carries 2021 I-Codes (IMC 2021) which does not have the latest language surrounding A2Ls, nor the latest referenced standards (ASHRAE 15, UL)

• BBRS recently had 10th edition code open hearings and accepted public comments through March 6th
 • HTS/DXS testified and submitted multiple proposed changes (as did Daikin and AHRI)
 • Attempting to bring the latest language into MA, putting us ahead of other States
Agenda

• Part 1 – How refrigerants fit into decarbonization
• Part 2 – The science of refrigerants, and why it matters
• Part 3 – Codes, standards, and flammability
• Part 4 – Phase-outs of refrigerants in HVAC equipment
• Part 5 – Where we are today with equipment
EPA phased out ozone-depleting substances, phasing out CFCs & HCFCs:
- i.e., going from R-22 to R-410a in high pressure systems
- Pretty tricky... different pressures, different volumes and pipe sizes, oils.

Solved our ozone problem. But now we have a Global Warming Potential problem (the “GWP” of a refrigerant, if it leaks).
- EPA tried to address this...

https://www.sciencedirect.com/science/article/pii/S1631071318301147#fig0015
The Kigali Amendment

- Amendment to the Montreal Protocol to globally phase down HFC’s (85% reduction in CO₂ tons equivalent) due to their Global Warming Potential (GWP)
- U.S. has been in and out (Obama – Trump – Biden)
- No direct legislative impact in the U.S. (until the AIM Act...)

2016

- Signed October 15th 2016 (28th meeting of the Montreal Protocol)

2019

- Start of the phase down for developed countries (including USA)

2036

- Phase down of developed countries (including USA) by 85%
State level activity

• U.S. Climate Alliance states started taking matters into their own hands
• Many followed the SNAP 20/21 guidelines
• Some States are still continuing with their phase down / phase out plans in parallel to the EPA
• Both EPA rules and State rules can apply in certain States!

https://nasrc.org/hfc-policy
• Phase-outs started Jan 1, 2024 for chillers

• Heat pump chillers are included, since they generate chilled water for comfort cooling

• Permitting date is key (old refrigerants still allowed on projects permitted before Jan 1, 2024)
 • Watch for EPA 2025 limit!

<table>
<thead>
<tr>
<th>End-Use Category: Air Conditioning</th>
<th>January 1, 2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal chillers (new)</td>
<td></td>
</tr>
<tr>
<td>Positive displacement chillers (new)</td>
<td></td>
</tr>
</tbody>
</table>

- VRV/VRF and mini/multi splits are not included
- Heating only heat pumps are not included
Main EPA Ruling

FACT SHEET
Final Rule - Phasedown of Hydrofluorocarbons: Restrictions on the Use of Certain Hydrofluorocarbons under Subsection (i) of the American Innovation and Manufacturing Act of 2020

Overview of this Final Rule
This final rule, signed on Oct 5, 2023, restricts the use of higher-GWP HFCs in new aerosol, foam, and refrigeration, air conditioning, and heat pump (RACHP) products and equipment.
Main EPA Ruling

Technology Transitions Program

Refrigeration, Air Conditioning, and Heat Pump Systems*

<table>
<thead>
<tr>
<th>Subsector</th>
<th>Systems</th>
<th>Global Warming Potential Limit or Prohibited Substances</th>
<th>Installation Compliance Date6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary air conditioning and heat pumps</td>
<td>Residential and light commercial air conditioning and heat pump systems</td>
<td>700</td>
<td>January 1, 20256</td>
</tr>
<tr>
<td></td>
<td>Variable refrigerant flow systems</td>
<td>700</td>
<td>January 1, 2026</td>
</tr>
<tr>
<td>Chillers</td>
<td>Industrial process refrigeration with exiting fluid below -50 °C (-58 °F)</td>
<td>Not covered</td>
<td>Not covered</td>
</tr>
<tr>
<td></td>
<td>Industrial process refrigeration with exiting fluid from -50 °C (-58 °F) to -30 °C (-22 °F)</td>
<td>700</td>
<td>January 1, 2028</td>
</tr>
<tr>
<td></td>
<td>Industrial process refrigeration with exiting fluid above -30 °C (-22 °F)</td>
<td>700</td>
<td>January 1, 2026</td>
</tr>
<tr>
<td></td>
<td>Comfort cooling</td>
<td>700</td>
<td>January 1, 2025</td>
</tr>
</tbody>
</table>

*Includes information on refrigeration, air conditioning, and heat pump systems.

Main EPA Ruling

FACT SHEET
Final Rule - Phasedown of Hydrofluorocarbons: Restrictions on the Use of Certain Hydrofluorocarbons under Subsection (i) of the American Innovation and Manufacturing Act of 2020

New systems with a GWP above 700 can be installed until January 1, 2026, so long as all components are manufactured or imported prior to January 1, 2025 (refer to the Interim Final Rule for additional details).

https://www.epa.gov/climate-hfcs-reduction/regulatory-actions-technology-transitions
<table>
<thead>
<tr>
<th></th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini / Multi Split ASHPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacture with R-410a</td>
<td>Yes</td>
<td>Only for replacement as “components”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sell / install R-410a inventory</td>
<td>Yes</td>
<td>Yes (1-year sell-through)</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-32 Availability</td>
<td>On-going releases</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTACs PTHPs RTUs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacture with R-410a</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sell / install R-410a inventory</td>
<td>Yes</td>
<td>Yes (3-year sell-through)</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-32 / R-454B Availability</td>
<td>On-going releases</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRV / VRF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacture with R-410a</td>
<td>Yes</td>
<td>Only for replacement as “components”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sell / install R-410a inventory</td>
<td>Yes</td>
<td>Yes (1-year sell-through)</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-32 Availability</td>
<td>No</td>
<td>On-going releases</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chillers</td>
<td>2024</td>
<td>2025</td>
<td>2026</td>
<td>2027</td>
<td>2028</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Manufacture with GWP > 700</td>
<td>Yes (if permitted < 2024)</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sell / install inventory</td>
<td>Yes (if permitted < 2024)</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Refrigerants</td>
<td>On-going releases</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

• Part 1 – How refrigerants fit into decarbonization
• Part 2 – The science of refrigerants, and why it matters
• Part 3 – Codes, standards, and flammability
• Part 4 – Phase-outs of refrigerants in HVAC equipment
• Part 5 – Where we are today with equipment
Are we ready for these new refrigerants?!

Depends where equipment/piping is located...

- Refrigerant Contained Outdoor
 - Need 10th edition code + minor amendments proposed*
- Refrigerant Contained in Machine Room / Mechanical Space
 - Need 10th edition code + minor amendments proposed*
- Direct Air Systems – Low Concentration Risk
 - Need 10th edition code + minor amendments proposed
- Direct Air Systems – Higher Concentration Risk
 - Need 10th edition code + major amendments proposed

* Primarily needs UL 60335-2-40
Refrigerant contained outdoors

Chillers / Air-Source Heat Pumps: R32 / 454B / 513A
Already here! More coming in 2024

R410A / 134A Deadline
1/1/24 [MA] – exception for permits before 1/2/24
1/1/25 [EPA] – no exception for permit date

Heating-Only Air-Source Heat Pumps R32 / 454B
Already here! More coming in 2024

R410A / 134A Deadline
1/1/25 [EPA]

*Need MA 10th Edition Building Code
Machine Room Equipment

Chillers / Heat Pumps: R32 / 454B / 513A / 1233zd / R-515B
Already here! More coming in 2024

R410A /134A Deadline
1/1/24 [MA] – exception for permits before 1/2/24
1/1/25 [EPA] – no exception for permit date

*Need MA 10th Edition Building Code
Rooftop Air Handling Systems

Rooftop Units / Condensing Units: **R32 & R454B**
Already here! More coming in 2024

R410A Deadline
1/1/25 [EPA]

Need amendments to MA 10th Edition Building Code
Decentralized Air Conditioning / Heat Pumps

Water-to-Air Heat Pumps: R32 & R454B
Already here! More coming in 2024

R410A Deadline
1/1/25 [EPA]

Need amendments to MA 10th Edition Building Code
Packaged Terminal Units (AC + Heat Pump)

Direct air system

Field Installed Ductwork

PTHP’s: R32 - Already here!

R410A Deadline 1/1/25 [EPA]
Distributed Refrigerant Systems

Mini / Multi Splits / VRV-S: R32 – Already here! More coming in 2024

R410A Deadline
1/1/25 [EPA]

VRV / VRF 3ph: R32 – Coming in 2025

R410A Deadline
1/1/26 [EPA]

*Need amendments to MA 10th Edition Building Code

*Need major amendments to MA 10th Edition Building Code

North America’s 1st R-32 ASHP
Up to: 27.4 SEER2 / 11.2 HSPF2
Distributed Refrigerant Systems

- R-32 across the board for all major products, globally
 - Efficiency, capacity, single component, non-proprietary, globally accepted
 - Use global knowledge of Daikin Industries R-32 products & released patents

- Be first with direction and education on A2L splits & VRV/VRF in North America

- Adopt and integrate A2L safety mitigation measures for easiest install, lowest leakage risks, highest safety and highest efficiency
Existing R-410a Distributed Refrigerant Systems

• AIM act specifically protects existing systems, ensuring they can be operated, maintained, repaired and even replaced (with some restrictions) without forcing a refrigerant change.

• EPA rules do not restrict manufacturing or import of R-410a equipment used for the replacement industry:
 • R-410a condensing units can be replaced with R-410a condensing units (no end date)
 • R-410a indoor units can be replaced with R-410a indoor units (no end date)

• EPA’s position on what constitutes a “new system”

 Is there a point at which replacing components triggers the GWP limits for new systems?

 Yes. Replacing 75% or more of the evaporators (by number) and 100 percent of the compressor racks, condensers, and connected evaporator loads of an existing system would trigger the requirements of new systems.

• We expect a big R-410A VRV market to continue feeding this replacement industry.

https://www.epa.gov/climate-hfcs-reduction/frequent-questions-phasedown-hydrofluorocarbons#technology-transitions-program
Other ways of reducing refrigerant emissions

• Chose the right refrigerant (available for the equipment)

• Pay attention to refrigerant charge (reduce where possible)

• **Keep. Refrigerant. In. Systems.** (reduce the risk of leaks)

 • Who is installing the systems? *(Certifications, not just of the contractor, but of who on site is physically doing the work)*

 • Who is (truly) witnessing the pressure test? Who is inspecting the install?

 • Where is the equipment being procured from? *(Engineering rep firms with training, experience, service instead of wholesalers)*

 • Remote monitoring & fault detection systems

Also reduces failures and down time, and overall project success
THANK YOU!

Contact Form & Drone Draw at

BOSTON

MARCH 19-20, 2024 • WESTIN BOSTON SEAPORT DISTRICT • NESEA.ORG/BE24
Conference + Trade Show of the Northeast Sustainable Energy Association (NESEA)

Mark LaFrance
Principal
HTS New England
Mark.lafrance (at) hts . com

JS Rancourt
Principal
DXS New England
Js.rancourt (at) dxseng . com