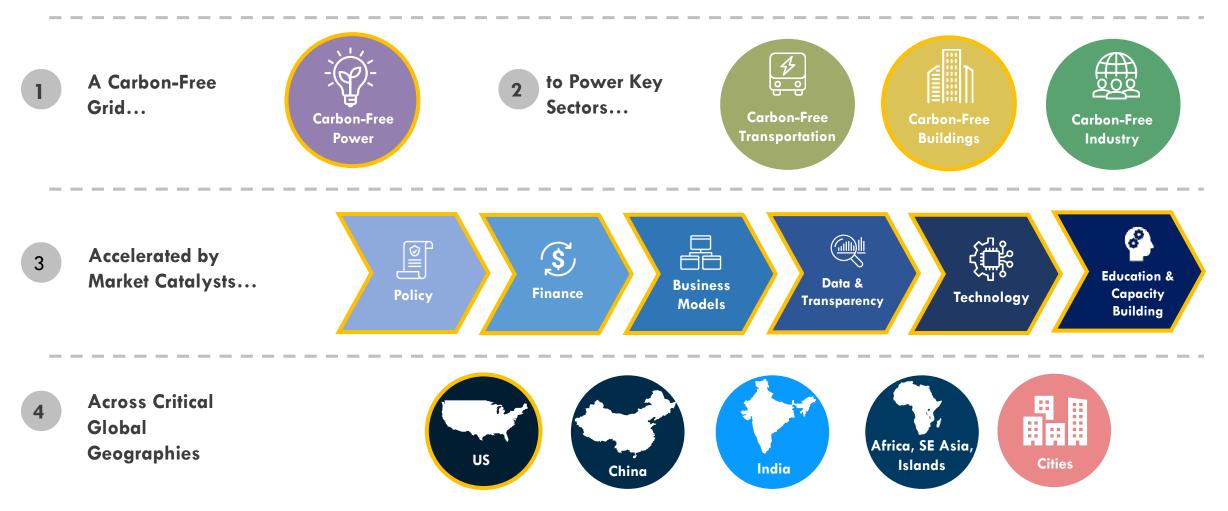
BUILDINGENERGY BOSTON

The Green Upgrade Calculator: A New Economic Modeling Tool for Home Decarbonization


Christopher Haringa (Abode Energy Management) Ryan Shea (RMI)

Curated by Christopher Nielson (Bruner/Cott)

Northeast Sustainable Energy Association (NESEA) | March 19, 2024

RMI is a non-partisan, non-profit organization that works to transform the global energy system to secure a clean, prosperous, zero-carbon future for all.

Our vision includes...

Calculator Overview

Demo for Individual Home Analyses

Demo for Aggregated Analyses

There are various barriers to home decarbonization

Eco

Economic: Higher upfront costs and increased energy bill in some cases

Consumer: Lack of clear understanding of the benefits of different upgrades (economic, climate, health, etc)

Workforce: Limited home contractors properly trained in and advocating for electrification to residents

RMI's Green Upgrade Calculator, coming April 2023, aims to address some, but not all, of these barriers

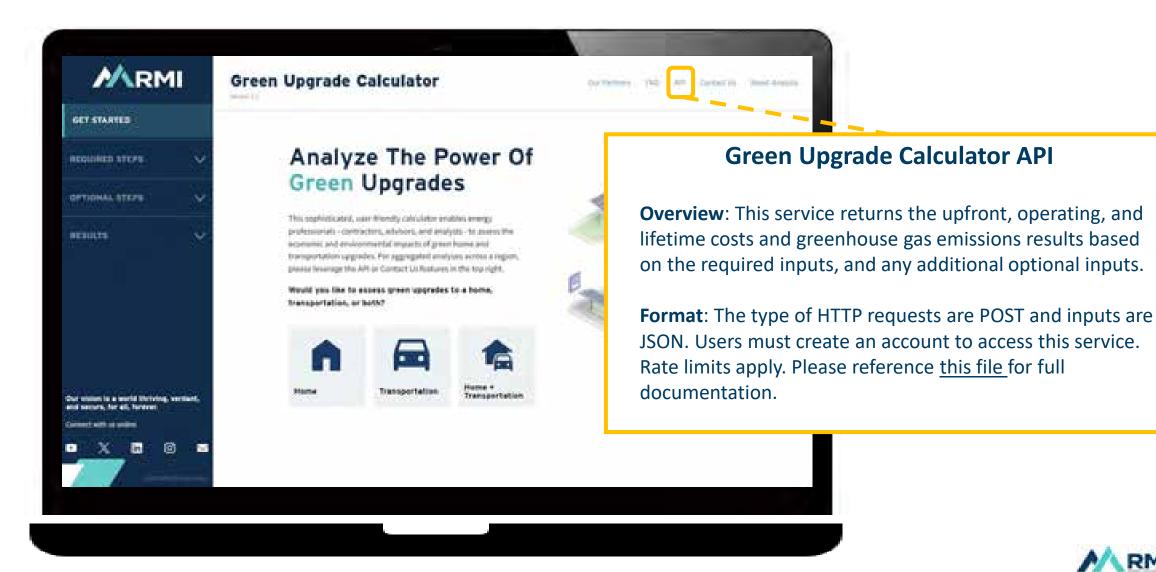
A sneak peak of the Green Upgrade Calculator: A free online tool for energy professionals to assess the economic and climate impacts of residential upgrades

The Green Upgrade Calculator has various use cases for energy professionals looking to analyze the impacts of residential upgrades, including:

1 Individual Home Analyses	 Home contractors can A. Modify system design and specs (e.g., hybrid vs whole-home ASHPs) B. Assess energy bill impacts (e.g., leverage specific utility tariffs) Home technical advisors can A. Compare contractor quotes (e.g., lifetime cost savings between two quotes) B. Quantify climate benefits (e.g., lifetime GHG benefit between HPWH and solar)
2 Aggregated Regional Analyses	 Energy analysts can A. Analyze national impacts (e.g., Home Energy Rebate programs) B. Analyze state policy impacts (e.g., Zero-emission equipment standard) C. Analyze local policy impacts (e.g., AC-to-heat pump requirement) D. Analyze utility regulation impacts (e.g., Clean Heat standard)

The Series of Control of Control

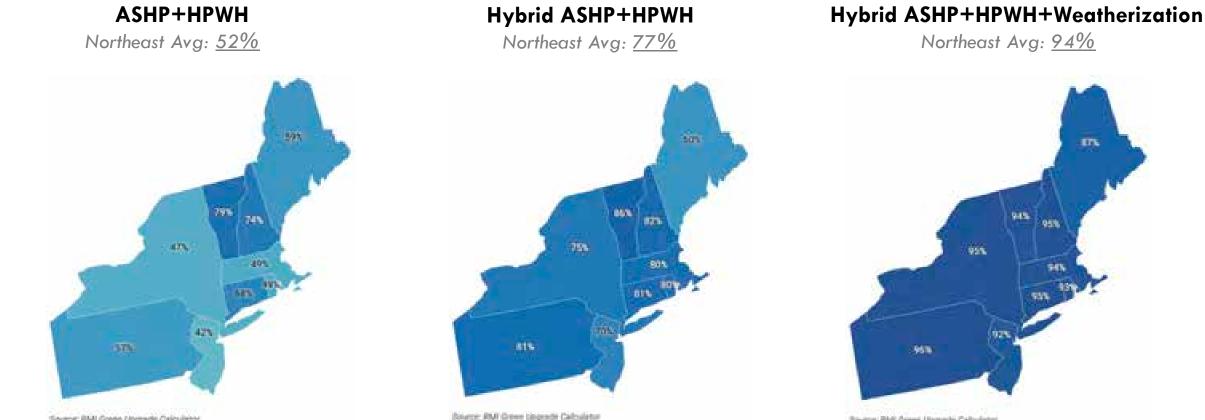
Demo for Aggregated Analyses


Calculator Overview

Demo for Individual Home Analyses

III. Demo for Aggregated Analyses

The calculator's API can be leveraged against regional building inventories to perform aggregated analyses


Example #1: Using the API and building inventories to analyze residential annual and lifetime costs from a proposed policy

- 1. Identify the green upgrades and results to analyze based on the policy (e.g., HPWH bill savings)
- 2. Identify the building inventory within the identified region to analyze (e.g., EIA RECS 2020)
- 3. Run the API to get results for each building type
- 4. Calculate the aggregated values based on the weights for each building prototype

Simplified example below for a HPWH analysis for single-family detached homes in MA

Building prototype #	1	2	3	4	5	6	7	8	9	10	11	12
Home construction year	Pre-1980						Post-1980					
Current fuel	Elect	Electricity Fuel oil Propane Natural gas Elect		ricity	Fuel oil	Propane	Natur	al gas				
Current water heater	Tank	Tankless	Tank	Tank	Tank	Tankless	Tank	Tankless	Tank	Tank	Tank	Tankless
Percentage of Homes	15%	2%	11%	0.3%	28%	6%	6%	1%	6%	2%	10%	3%
HPWH Annual Savings	\$910	\$860	\$330	\$400	\$70	-\$10	\$1200	\$1130	\$435	\$525	\$90	-\$20

Example #2: Using the API and building inventories to analyze the homes with lower utility bills across a region under different scenarios

Source: RMI Green Lapgrade Calculator

Note: Hybrid ASHP only applies to gas-powered homes.

Note: Weatherization (adding insulation and sealing air leaks) only applies to homes built before 1980.

Bource: RMI Green Upgrade Calculates

Calculator Overview

Demo for Individual Home Analyses

Demo for Aggregated Analyses

Abode Background

Utility Efficiency Programs

Mass Save® Home Performance Contractor Lead Vendor - National Grid & Eversource

- Trade ally management
- 50K home energy assessments
- 18K weatherization installations
- 10K quality assurance (QA) inspections

Municipal Light Plant Weatherization Quality Assurance

- Trade ally management
- Virtual and in-home QA inspections

Electrification & Decarbonization

Overall Customer Support

- 775 Quotes Compared for Air Source Heat Pumps
- Nearly 10,000 heat pump consultations

MassCEC & City of Boston Decarbonization Programs

- Technical lead consultant
- Implementation for single-family and triple-decker pilot

Energize ConnecticutsM and Mass Save® Heating Cooling Support, and Clean Heat Rhode Island lead vendor

- Statewide customer consultation services
- Heat Pump Installer Network (HPIN) management

Municipal Light Plant Community Heat Pump Support 6 FOR THE CODOC

• 18 communities

Barriers contractors face in home electrification

Still a specialized marketplace "PEMDAS" of electrification Project costs and timeline Decarbonization 'GC'

Transparency of heat pump performance Analysis/Comparison tools bridging the gap Not on the contractor's radar? Interaction between greupgrades

Comfort-level with savings analysis & design

 Performance of legacy equipment vs heat pumps
 Limitations of the available equipment

Helping homeowners make informed decisions

Qualified Product Lists

Equipment Summary

Highlights equipment that meets rebate requirements

Operating cost

Estimated annual heating and cooling cost

Change in Operating Cost

Change relative to estimated existing operating cost

System Fit Score

Explained on the next slide

Environmental benefit/CO2 reduction

• % change in CO2

System Fit Score

- Evaluated based on analysis of six key measures of performance
- SCOP, Capacity maintenance, Aux electric resistance, Sizing for heating, Cycling temperature, Cooling turndown ratio

Equipment Visual

Visual summary of the quoted equipment

System Sizing

Sizing relative to the estimated heating load

Cost to Purchase and Annual Heating and Cooling Cost

Compared to current heating and cooling costs

Other Considerations

 Dynamic list of considerations based on performance data and analysis results

Sustainable Comfort HVAC

RMI's Green Upgrade Calculator addresses key contractor barriers

- Provide clarity in a specialized marketplace
 - Differentiate conventional fossil fuel & AC systems from decarbonization pathways
- Build confidence for inindustry professionals and their clients
- Numerous real-world opportunities

Real world opportunities

Green Upgrade Calculator

Building performance contractors, GCs, HVAC contractors, distributors

- Sales tool
- Model/evaluate commonly sold products
- Internal training tool

How this breaks down barriers

 Reduce the complexity of entry for contractors into decarbonization

- o Flattens the learning curve
- Help mitigate poor outcomes and confusion for all stakeholders

Calculator Overview

Demo for Individual Home Analyses

Demo for Aggregated Analyses

Group Discussion

1. Take 5 minutes at your table to discuss the following question

- A. Where do you see this being most useful in your work?
- B. What are your top suggestions to make it more useful?
- C. How can this calculator standardize data analysis in the industry?
- 2. Tables will then report out their answer to the group