BUILDINGENERGY BOSTON

Thermal Resilience as a Retrofit Metric

Al Mitchell (Phius)

Curated by Tristan Grant (MaGrann Associates)

Northeast Sustainable Energy Association (NESEA) | March 19, 2024

ophius

Thermal Resilience As A Retrofit Metric

Al Mitchell NESEA March 19, 2024

- Define Thermal Resilience
- Metrics
- Strategies
- Modeling protocol
- Graphs
- Conclusions

What is Thermal Resilience?

Evaluating thermal resilience of building designs using building performance simulation – A review of existing practices

Chun Yin Siu^{a,*}, William O'Brien^b, Marianne Touchie^{a,c}, Marianne Armstrong^d, Abdelaziz Laouadi^d, Abhishek Gaur^d, Zahra Jandaghian^d, Iain Macdonald^d

TOWARDS A STANDARDIZED FRAMEWORK FOR THERMAL RESILIENCE MODELING AND ANALYSIS

Ted Kesik¹, William O'Brien², and Aylin Ozkan¹ ¹Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Canada ²Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada

Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest

Alexandra R. Rempel^{a,*}, Jackson Danis^b, Alan W. Rempel^c, Michael Fowler^d, Sandipan Mishra^e

Evaluation of the Thermal Resilience of a Community Hub

Aylin Ozkan¹ and Joel Good² ¹RWDI Consulting Engineers and Scientists, Toronto, ON, Canada ²RWDI Consulting Engineers and Scientists, Vancouver, BC, Canada

Evaluating thermal resilience of building designs using building performance simulation – A review of existing practices

ASSESSING RESILIENCY AND PASSIVE SURVIVABILITY IN MULTIFAMILY BUILDINGS

Lisa M. White¹ and Graham S. Wright¹ ¹PHIUS, Chicago, U.S.A

MODELING AND ANALYSIS

Evaluation of the Thermal Resilie Ted Kesik¹, William O'Brien², and Aylin Ozkan¹ Aylin Ozkan¹ and J ¹Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Canada ¹RWDI Consulting Engineers and Scientists, Toronto, ON, Canada ²RWDI Consulting Engineers and Scientists, Vancouver, BC, Canada

Evaluating thermal resilience of building designs using building performance simulation – A review of existing practices

Chun Yin Siu^{a,*}, William O'Brien^b, Marianne Touchie^{a,c}, Marianne Armstrong^d, Abdelaziz Laouadi^d, Abhishek Gaur^d, Zahra Jandaghian^d, Iain Macdonald^d

Enhancing Resilience in Buildings Through Energy Efficiency

December 2022

nce of building designs using building A review of existing practices

 $\iota^b,$ Marianne Touchie $^{a,c},$ Marianne Armstrong d, aur d, Zahra Jandaghian d, Iain Macdonald d

Е

AI

HOURS OF SAFETY IN COLD WEATHER: A FRAMEWORK FOR CONSIDERING RESILIENCE IN BUILDING ENVELOPE DESIGN AND CONSTRUCTION

Evaluation of the Thermal Resilie

Ted Kesik¹, William O'Brien², and Aylin Ozkan¹

Aylin Ozkan¹ and J¹Daniels Faculty of Architecture. Landscape and Design. University of Toronto. Canada ¹Daniels Faculty of Architecture. Landscape and Design. University of Toronto. Canada ²Departmet BUILDINGS

¹RWDI Consulting Engineers and Scientists, ²RWDI Consulting Engineers and Scientists, V

Lisa M. White¹ and Graham S. Wright¹ ¹PHIUS, Chicago, U.S.A

Pilot-Credits IPpc100: Passive Survivability and Back-up Power During Disruptions

- Option 1: Provide for Passive Survivability (thermal safety) (1 point)
- 2. Path 2: Standard Effective Temperature (SET)
- 3. Path 3: Passive House certification

Control Thermal Resilience

A building's ability to remain at and/or to recover to a habitable state after a disruptive event (such as power outage) where mechanical equipment is not providing heating, cooling or ventilation." (Siu et al., 2023)

A building's ability to remain at and/or to recover to a habitable state after a disruptive event (such as power outage) where mechańical equipment is not providing heating, cooling or ventilation, although some critical loads may be met with local renewable generation and battery backup.

How do we MeasureThermal Resilience?

The Goal: Protect Occupants

Figure 2a. Range of homeothermy (Holmes et al, 2016).

Winter Metrics

SET Hours [°F hr]

- Based on the Pierce Two Node comfort model
- Comprehensive of environmental conditions
 - Clo
 - Temperature (operative and DB)
 - Humidity
- Wind speed Good for summer and winter

Limit: 216 °F hr

ASHRAE 55-2010 defines SET as "the temperature of an imaginary environment at 50% relative humidity, <0.1 m/s [0.33 ft/s] average air speed, and mean radiant temperature equal to average air temperature, in which total heat loss from the skin of an imaginary occupant with an activity level of 1.0 met and a clothing level of 0.6 clo is the same as that from a person in the actual environment, with actual clothing and activity level"

Winter Metrics

Hours below 2°C (35.6°F) [hr]

- Simple dry bulb calculation
- Limits freezing
 - Health risks
 - Infrastructure damage

Limit: 0 hr

Q Summer Metrics

Heat Index [°F]

- Commonly recognized
- Dry bulb + Humidity

Limit: Advisory

	Temperature (°F)															
	80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110
40	80	81	83	85	88	91	94	97	101	105	109	114	119	124	130	136
45	80	82	84	87	89	93	96	100	104	109	114	119	124	130	137	
50	81	83	85	88	91	95	99	103	108	113	118	124	131	137		
55	81	84	86	89	93	97	101	106	112	117	124	130	137			
60	82	84	88	91	95	100	105	110	116	123	129	137				
65	82	85	89	93	98	103	108	114	121	128	136					
70	83	86	90	95	100	105	112	119	126	134						
75	84	88	92	97	103	109	116	124	132							
80	84	89	94	100	106	113	121	129								
85	85	90	96	102	110	117	126	135								
90	86	91	98	105	113	122	131									
95	86	93	100	108	117	127										
100	87	95	103	112	121	132										

Likelihood of Heat Disorders with Prolonged Exposure and/or Strenuous Activity

Caution Extreme Caution Enger Extreme Danger

Mora Deadly Day [day]

- Based on epidemiological studies
- Dry bulb + Humidity
- Limit: 0 Days

Strategies

Annual Energy = kWh/yr (or kBTU/yr) □ area under the curve **Peak Power** = kW (or kBTU/hr) \Box point at top of curve

Passive Building Principles

Dynamics

© Phius 2021

R,

Passive Building Principles

High Performance Insulation

Thermal Bridge Elimination

Air-Tightness

Enthalpy Recovery Ventilation Shading / Daylighting

RADIATION CONTROL

Climate Appropriate Glazing

Resilience | Air sealing, insulation, seismic, PV, batteries...

+

Health | Radon, Carbon monoxide, mold...

+

Decarbonization | Electrification, community solar, low-carbon choices...

Passive Measures

- Natural Ventilation
- Scheduled Natural Ventilation
- Shades (preferably Exterior)

When Passive Measures Aren't Enough

- Cooling on setback
- PV
- Batteries

Modeling

O Stress Weather

- Limited physics based stress weather data
- Morphing to match ASHRAE statistical returns
- 10-Year winter returns

	n-Y	lear Return	Period Valu	es of Extrem	ne Temperat	ture		
n=5	years	n=10	years	n=20	years	n=50 years		
Min	Max	Min	Max	Min	Max	Min	Max	
-1.4	97.8	-4.3	99.6	-7.1	101.2	-10.7	103.4	
-3.0	79.5	-5.6	80.4	-8.2	81.2	-11.4	82.3	

O Stress Weather

- Limited physics based stress weather data
- Morphing to match ASHRAE statistical returns
- 20 Year summer returns

	n-Y	lear Return	Period Valu	es of Extrer	ne Temperat	ture		
n=5	years	n=10	years	n=20	years	n=50 years		
Min	Max	Min	Max	Min	Max	Min	Max	
-1.4	97.8	-4.3	99.6	-7.1	101.2	-10.7	103.4	
-3.0	79.5	-5.6	80.4	-8.2	81.2	-11.4	82.3	

US DOE Prototypical Single Family House:

- 2 Stories
- 3 beds (4 occ)
- 2,128 sqft (198 sqm)
- 13.5% WWR
- slab on grade

Packages and Summer Modes

Retrofit Packages:

- 0. Baseline House
- 1. Electrification
- 2. DOE 'Market Ready Envelope'
- 3. IECC 2021
- 3b. IECC 2021 @ 0.06cfm50
- 4. Phius CORE Prescriptive

Summer Modes:

NV - natural vent., temp control

SchNV - scheduled nat. vent., temp ctrl.

ShcNV+Shd - add exterior blinds

DC - heat pump

DC+Shd - heat pump + ext. blinds

Inputs

Analysis

Results

Graphs

Chicago Winter Outage Resilience

Chicago Winter Outage Resilience

Table 3: This table details the single point metrics for the 8 climates run in the parametric study. Failing metrics highlighted in blue for winter outage and red for summer outage.

Run Name	SET	Hours	Total	Caution	Extreme	Danger	Extreme	EUI
	Hours	$<2^{\circ}C$	Deadly	(>26.7,	Caution	(>39.4,	Danger	[kWh/m2
	<12.2°C	[hr]	Days	<32.2°C)	(>32.2,	<51.7°C)	$(>51.7^{\circ}C)$	yr]
			20-0-000000000000000000000000000000000	[hr]	<39.4°C)	[hr]	[hr]	2
	<i>a</i>				[hr]	0.00	A 10.	
			Tampa, F	lorida	-	-		
BASE_NV	0.0	0.0	7.0	52.8	80.8	11.8	0.0	61.4
DOE Envelope_NV	0.0	0.0	5.0	61.0	83.0	0.0	0.0	46.4
IECC_NV	0.0	0.0	6.0	57.3	84.5	2.5	0.0	48.9
IECC+0.4_NV	0.0	0.0	6.0	55.8	64.0	24.8	0.0	46.3
Phius Prescriptive_NV	0.0	0.0	5.0	57.5	83.0	3.3	0.0	43.3
			Chicago,	Illinois				
BASE_NV	998.0	118.1	2.0	66.5	57.0	0.0	0.0	162.7
DOE Envelope_NV	540.3	48.6	2.0	67.0	56.5	0.0	0.0	88.6
IECC_NV	370.8	21.0	2.0	71.8	50.3	0.0	0.0	80.5
IECC+0.4_NV	2.7	0.0	3.0	54.0	59.8	7.0	0.0	54.6
Phius Prescriptive_NV	0.0	0.0	3.0	59.3	61.0	0.0	0.0	44.5
		Interi	national Fal	ls, Minneso	ta			
BASE_NV	1619.0	159.3	0.0	39.0	0.0	0.0	0.0	291.5
DOE Envelope_NV	1041.3	122.8	0.0	36.0	0.0	0.0	0.0	157.7
IECC_NV	777.5	103.3	0.0	33.0	0.0	0.0	0.0	141.7
IECC+0.4_NV	60.0	0.0	0.0	34.3	0.0	0.0	0.0	81.2
Phius Prescriptive_NV	0.0	0.0	0.0	34.0	0.0	0.0	0.0	54.6

		(Great Falls,	Montana						
BASE_NV	1297.9	122.5	0.0	21.5	0.0	0.0	0.0	199.7		
DOE Envelope_NV	790.9	97.3	0.0	18.3	0.0	0.0	0.0	103.4		
IECC_NV	584.9	73.3	0.0	15.0	0.0	0.0	0.0	92.8		
IECC+0.4_NV	48.7	0.0	0.0	21.3	0.0	0.0	0.0	57.6		
Phius Prescriptive_NV	0.0	0.0	0.0	15.3	0.0	0.0	0.0	41.3		
		Alt	ouquerque,	New Mexic	0					
BASE_NV	0.0	0.0	0.0	90.3	0.0	0.0	0.0	98.7		
DOE Envelope_NV	0.0	0.0	0.0	86.0	0.0	0.0	0.0	57.1		
IECC_NV	0.0	0.0	0.0	68.8	0.0	0.0	0.0	53.4		
IECC+0.4_NV	0.0	0.0	0.0	70.8	0.0	0.0	0.0	41.9		
Phius Prescriptive_NV	0.0	0.0	0.0	57.0	0.0	0.0	0.0	37.0		
Nashville, Tennessee										
BASE_NV	50.0	0.0	3.0	56.5	70.3	0.0	0.0	108.3		
DOE Envelope_NV	0.0	0.0	3.0	60.8	68.8	0.0	0.0	64.8		
IECC_NV	0.0	0.0	0.0	71.0	49.0	0.0	0.0	59.1		
IECC+0.4_NV	0.0	0.0	1.0	57.5	59.0	0.0	0.0	46.0		
Phius Prescriptive_NV	0.0	0.0	1.0	62.8	53.5	0.0	0.0	41.1		
			El Paso,	Texas						
BASE_NV	0.0	0.0	0.0	73.0	9.3	0.0	0.0	72.5		
DOE Envelope_NV	0.0	0.0	0.0	78.0	3.0	0.0	0.0	49.3		
IECC_NV	0.0	0.0	0.0	72.5	1.0	0.0	0.0	50.0		
IECC+0.4_NV	0.0	0.0	0.0	68.0	3.8	0.0	0.0	44.3		
Phius Prescriptive_NV	0.0	0.0	0.0	62.0	0.0	0.0	0.0	38.0		
		Van	couver Brit	ish Columb	ia					
BASE_NV	8.4	0.0	0.0	0.0	0.0	0.0	0.0	150.4		
DOE Envelope_NV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.8		
IECC_NV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	58.85		
IECC+0.4_NV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.5		
Phius Prescriptive_NV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.5		

Conclusions

Why This Metric

- Good measure of how passive a building is
- Less investment (capital and embodied CO2) than new construction passive buildings
- Buildings in values to the owner
 - Occupant health and safety
 - Load reduction
 - Operational energy savings
- Tunable to each specific building

- Thermal resilience is measurable and achievable
- Existing modeling tools can be used to simulate the outage period
- Passive measures work well for winter thermal resilience
- Summer reponses:
 - Passive strategies can work well in dry summers
 - Humid summers need some dehumidifcation

Future Work

- Run more studies to validate strategies
- Optimize mixed mode strategies for summer outages
- Real life study to validate modeling
- Work on multizonal model
- Future weather data
- Extreme weather data
- Non-residential buildings?

Al Mitchell, EIT, CPHC Technical Staff, Phius amitchell@phius.org

Appendix

Full graph results for:

- Miami, FL
- El Paso, TX
- Seattle, WA
- Denver, CO
- International Falls, MN

Miami, FL

MIAMI_NV_Heating Outage Resilience

MIAMI_NV_Cooling Outage Resilience

MIAMI_SNV_Cooling Outage Resilience

MIAMI_SNV+Shd_Cooling Outage Resilience

MIAMI_HP_Cooling Outage Resilience

MIAMI_HP+Shd_Cooling Outage Resilience

EL-PASO_NV_Heating Outage Resilience

EL-PASO_NV_Cooling Outage Resilience

EL-PASO_SNV_Cooling Outage Resilience

EL-PASO_SNV+Shd_Cooling Outage Resilience

EL-PASO_HP_Cooling Outage Resilience

EL-PASO_HP+Shd_Cooling Outage Resilience

EL-PASO_EC_Cooling Outage Resilience

EL-PASO_EC+Shd_Cooling Outage Resilience

SEATTLE_NV_Heating Outage Resilience

SEATTLE_NV_Cooling Outage Resilience

SEATTLE_SNV_Cooling Outage Resilience

SEATTLE_SNV+Shd_Cooling Outage Resilience

SEATTLE_HP_Cooling Outage Resilience

SEATTLE_HP+Shd_Cooling Outage Resilience

DENVER_NV_Heating Outage Resilience

DENVER_NV_Cooling Outage Resilience

DENVER_SNV_Cooling Outage Resilience

DENVER_SNV+Shd_Cooling Outage Resilience

DENVER_HP_Cooling Outage Resilience

DENVER_HP+Shd_Cooling Outage Resilience

DENVER_EC_Cooling Outage Resilience

DENVER_EC+Shd_Cooling Outage Resilience

0

International Falls, MN

IFAP_NV_Heating Outage Resilience

IFAP_NV_Cooling Outage Resilience

IFAP_SNV_Cooling Outage Resilience

IFAP_SNV+Shd_Cooling Outage Resilience

IFAP_HP_Cooling Outage Resilience

IFAP_HP+Shd_Cooling Outage Resilience

