BUILDINGENERGY BOSTON

Lowering Total Carbon Emissions in a Dorm: Strategies for Design and Construction

Catherine Earley (Vermont Integrated Architecture) Bill Maclay (Maclay Architects) Jacob Racusin (New Frameworks) Andy Shapiro (Energy Balance)

Curated by Emily Nottonson (Thoughtforms) and Stephen Stuart (Sullivan County)

Northeast Sustainable Energy Association (NESEA) | March 20, 2024

Bill Maclay, Maclay Architects, Founding Principa Catherine Earley, Vermont Integrated Architects Andrew M. Shapiro, Energy Balance, Inc Jacob Deva Racusin, New Frameworks

The Putney School New Dorms: AIA Learning Objectives

1. Lowering Embodied Carbon

Define embodied carbon and identify strategies that the design team used to lower embodied carbon emissions in the project.

2. Lowering Operational Carbon

Define operational carbon emissions and how they are different from operational energy, and identify strategies that the design team used to lower operational carbon emissions in the project.

3. Tools & Methods

Identify the analysis tools and methodology used to evaluate the total carbon impact of the project.

4. Lessons Learned

Apply lessons learned from the project team during design and construction to the participants' professional experience.

The Putney School New Dorms: Structure of Presentation

- 1. The building and context
- 2. Operational Energy and CO2e Modeling (3 options)
- 3. Embodied CO2e in Materials (3 options)
- 4. Total carbon picture (3 options)
- 5. Lessons Learned
- 6. Questions?

The Putney School New Dorms: Cedar Siding

Gund House

Hepper House

The Putney School New Dorms: Two Buildings, Small Differences

Gund House

Hepper House

The Putney School New Dorms: Embodied Carbon – Material Considerations

Original interior rendering:

Double-height common space for students

Double-height common space for students

Wood accents anticipating student involvement

The Putney School New Dorms: Embodied Carbon & Insulation

IN TAVES VALLEYS & ATVENT- CONT. ROOMA NECK HOPE STIP ACTIVE 18" of Blown Cellulose **R-60** INCIR TRUSS PLATE 12" of Wet Spray Cellulose S 543 SLID WALL & LEOC OSE INSULATION (RO) VAROR RETARDER & OUTSIDE OF STUD **R-40** SEE STRUCTURAL TO SUPPORT BLOCKING AND GOMMODION ATTRUSUS TIPICA 200 6 10 24CATHING 4 ٢ GUE& CRO (1) (H) 4" of EPS + Polyiso R-16 THET FLOOR ASSEMBLY SHI DWG 7/40.5 IST R. T.O. SHEATHING 12" of Glavel **R-20** SASENENT 103

The Putney School New Dorms: Embodied Carbon & Concrete

		680	ANSIAN BY A CONTRACT					
	TABLE 1. CONCRETE MIXTURES					PROVIDE BID PE MIX OPTIONS	CE FOR BOTH TABLE 1 AN	ND TABLE 2
CONCRETE USAGE	MIN. COMPRESSIVE STRENGTH (f ^r c)	CONCRETE TYPE	EXPOSURE CLASSES	MAX. W/CM RATIO	PERMISSIBLE AIR CONTENT	REQUIRED CEMENT REPLACEMENT	MAX. AGGREGATE SIZE	ADDITIONAL REMARKS
FOOTINGS	3,000 psi AT 56 DAYS	NWC	C0, F0	N/A	N/A	25% - 70%	1-1/2"	
WALLS, COLUMNS AND PIERS	4,000 psi AT 28 DAYS	NWC	C1, F1	0.45	4.5% ±1.5%	20% - 50%	1-1/2"	
INTERIOR SLAB-ON-GRADE	4,000 psi AT 28 DAYS	NWC	C0, F0	0.50	N/A	0 - 25%	1"	
EXTERIOR SLAB-ON-GRADE	5,000 psi AT 56 DAYS	NWC	C2, F2	0.40	5.5% ±1.5%	15 - 25%	1-1/2"	

NOTES:

1. ALL CONCRETE SHALL BE CONSIDERED TO BE IN EXPOSURE CLASS F0, S0, P0 AND C0 ACCORDING TO ACI 318-08 UNLESS NOTED OTHERWISE IN TABLE ABOVE, IN NOTES BELOW OR ELSEWHERE ON THE STRUCTURAL DRAWINGS.

2. CONCRETE NOTED ABOVE OR ON PLAN AS EXPOSURE CLASS F1, F2, S1, S2, S3, P1, C1 OR C2 SHALL BE PROPORTIONED TO COMPLY WITH ACI 318-08 TABLES 4.3.1, 4.4.1 AND 4.4.2 IN ADDITION TO THE NOTATIONS IN THE REQUIREMENTS FOR VARIOUS EXPOSURE CLASSES RELATIVE TO CEMENT TYPE, AIR ENTRAINMENT REQUIREMENTS, CHLORIDE ION LIMITS AND POZZOLAN LIMITS.

3. FOR SLAB, COORDINATE AND PROVIDE MIX DESIGNS MEETING MAXIMUM CEMENT CONTENT FOR AGGREGATE SIZE TO COMPLY WITH TABLE 8.4.1B OF ACI 302-15.

The Putney School New Dorms: Lowering Operational Emissions at building envelope

Final blower door test of 0.035 CFM50 /SF of Envelope (6 sides)

The Putney School New Dorms: Continuous Air Barrier

The Putney School New Dorms – Energy and CO2e Modeling

Three options analyzed:

- 1. Code building baseline, 2020 CBES
- 2. Baseline net zero ready building Net zero ready performance built as if embodied CO2e was NOT considered
- 3. Lower embodied carbon net zero ready Building as built

Building Enclosure	Code building baseline, CBES	Baseline Net Zero Ready Building	Lower Embodied Carbon Net Zero Ready
	Low-e R-3.0, U33	Triple-glazed vinyl	Triple-glazed vinyl
Windows	windows, vinyl, SHGC-	windows; U=0.20;	windows; U=0.20;
	0.37	SHGC=0.21	SHGC=0.21

Building Enclosure	Code building baseline, CBES	Baseline Net Zero Ready Building	Lower Embodied Carbon Net Zero Ready
			U - 0.3, R-3.3, metal insulated, wood/glass
	front doors	front doors	front doors

Building	Code building baseline,	Baseline Net Zero Ready	Lower Embodied Carbon
Enclosure	CBES	Building	Net Zero Ready
Concrete	100% cement in all uses	100% cement in all uses	Footings, 50% slag replacement of cement; walls, columns and piers, 19.6% replacement; interior slabs 0%; exterior slabs 20% replacement

Building Enclosure	Code building baseline, CBES	Baseline Net Zero Ready Building	Lower Embodied Carbon Net Zero Ready
	Basement Walls, 3" XPS foam; f-factor 0.41	Basement Walls, 2" XPS foam + 2" foil-faced PI + empty 2x4 cavity R-23, f- factor 0.16	Basement Walls, 2" XPS foam + 2" foil-faced PI + empty 2x4 cavity R-23, f- factor 0.16
Insulation	No subslab insulation	R-20 sub-slab XPS insulation, on 7" crushed stone.	R-R-20 Glavel under basement slab, except over footings, where there will be 4" EPS
	Walls: R-21 fiberglass cavity insulation in 2x6 16" OC, interior polyethylene membrane + R-7.5 XPS continuous	Walls: R-21 mineral fiber cavity insulation in 2x6 16" OC, interior polyethylene membrane + R-15 XPS continuous	Walls: R-40 double stud wall with cellulose, Intello+ variable vapor retarder interior membrane
	Attic R-49 fiberglass batts	Attic R-80 mineral fiber batts	Attic R-80 loose fill cellulose

Building Enclosure	Code building baseline, 2020 CBES	Baseline Net Zero Ready Building	Lower Embodied Carbon Net Zero Ready
Cladding	Fiber cement siding	Fiber cement siding	Locally milled Eastern Cedar, NY state
Cladding finish	3 coats water-based paint	3 coats water-based paint	3 coats oil-based semi- transparent stain
Roofing	standing seam metal	standing seam metal	standing seam metal

Building	Code building baseline,	Baseline Net Zero Ready	Lower Embodied Carbon
Enclosure	2020 CBES	Building	Net Zero Ready
Interior partitions	cold formed steel studs	cold formed steel studs	wood studs
gypsum board	typical	typical	 Stairwell Glass Mat: DensArmor Plus – 5/8" MR Board: 5/8" Gold Bond Shaftliner XP: 1" Durock Cement Board: – ½"
Interior finishes	commercially available	commercially available	Locally milled wainscoting,
	wainscoting	wainscoting	NY state

Building Enclosure	Code building baseline, 2020 CBES	Baseline Net Zero Ready Building	Lower Embodied Carbon Net Zero Ready
Air leakage rate	0.3 ACH50	.05 cfm50/sq.ft. shell, 6 sides	.05 cfm50/sq.ft. shell, 6 sides
Enclosure Commissioning	No	Yes	Yes

Achieved 0.035 cfm50/sq.ft. shell – 6 sides!

	Code building baseline,	Baseline Net Zero Ready	Lower Embodied Casrbon
Mechanicals	2020 CBES	Building	Net Zero Ready
	1200 cfm total, 50%	1200 cfm total, 50%	1200 cfm total, 50%
Ventilation	enthalpy recovery; 66%	enthalpy recovery; 66%	enthalpy recovery; 66%
	sensible recovery,	sensible recovery,	sensible recovery,
	propane 90 AFUE boiler at		
Heat	85% seasonal efficiency,	ASHP annual heat COP 2.3,	ASHP annual heat COP 2.3,
	fan coils		
Cooling	Split system AC with coils in ductwork	Split system AC with coils in ductwork	ASHP cooling
Setpoint	70F heating 72F cooling Basement conditioned	70F heating 72F cooling Basement conditioned	70F heating 72F cooling Basement conditioned

	Code building baseline,	Baseline Net Zero Ready	Lower Embodied Casrbon
Mechanicals	2020 CBES	Building	Net Zero Ready
		Solar hot water, backup	Solar hot water, backup
	From boiler, 75% efficient	with heat pump, with	with heat pump, with
Hot Water	delivery plus recirc loop	drainwater heat recovery	drainwater heat recovery
	losses	on dorm showers,	on dorm showers,
		resistance electric top-up	resistance electric top-up
Metering?	None	EGauge	EGauge
MEP	No	Voc	Voc
Commissioning	No	Yes	Yes

The Putney School New Dorms – Building Enclosure

Building floorplan complexity increases cost of achieving a high performance enclosure

First floor has 22 corners; second floor has fewer corners

Hot Water	From boiler, 75% efficient delivery plus recirc loop losses	with heat pump, with drainwater heat recovery on dorm showers,	Solar hot water, backup with heat pump, with drainwater heat recovery on dorm showers, resistance electric top-up
MEP Commissioning	No	Yes	Yes
Lighting	100% LED	100% LED	100% LED

Drainwater heat recovery system captures about 50% of heat going down the drain

Ganged bathrooms allow shower drainwater heat recovery from dorm room showers - two floors similar 0 dorm room showers <u>and</u> avoids 0 need for recirc hot water system \circ 0 0 Apt #2 Apt #

The Putney School New Dorms – Operational Energy - Modeled

The Putney School New Dorms – Operational Energy CO2e Emissions - Modeled

The Putney School New Dorms – Operational Energy CO2e Emissions

The Putney School New Dorms – Embodied Energy CO2e Emissions --- Life Cycle Assessment

The Putney School New Dorm – Embodied CO2e Emissions - BEAM

The Putney School New Dorms -

Embodied Energy CO2e Emissions --- Life Cycle Assessment

The Putney School New Dorms – The BIG PICTURE What is the <u>atmospheric CO2e</u> over time?

Electric Grid Emissions Expected to Reduce Over Time

and

Persistence of CO2 in the atmosphere

The Putney School New Dorms –

Grid Electricity CO2e Emissions Over Time – NREL Cambium Model

The Putney School New Dorm – CO2e Emissions --- Persistence in Atmosphere

The Putney School New Dorms – CO2e Emissions --- Persistence in Atmosphere

The Putney School New Dorm – CO2e Emissions --- Persistence in Atmosphere

The Putney School New Dorm

Putney School New Dorm -- 50 years of CO2e in atmosphere from first 25 years of <u>ALL emissions</u>

lbs CO2e

The Putney School New Dorms – Lessons Learned -- Critical Items

- Active commitment of owner, design team and builder
- Early engagement allows strategy to turn into design, specs and details
- Lots of corners and roofs make it much more difficult to achieve a good enclosure

The Putney School New Dorms – Lessons Learned -- Critical Items

- Cement substitutes in concrete difficult to achieve and can have uncertainty in supply
- Building enclosure commissioning including periodic testing of enclosure
- Show up more often! Preconstruction meeting needs to be followed by same for each sub just before they begin their piece of the work
- Moisture management during construction!

The Putney School New Dorms – Lessons Learned -- Critical Items

- ReArch CM attention to detail AND problem solving was excellent
- Skilled, can-do air sealing and insulation subcontractor (Murphy's CellTech)
- Building enclosure commissioning and MEP commissioning (BECx and Cx) with EGauge monitoring system

The Putney School New Dorms – Lessons Learned – Pinch Points in the Process

- Complex enclosure areas required on-site head-scratching sessions with CM, framers, insulation and and air sealing contractor, enclosure commissioner
- Cement substitutes availability hard to predict – hold the line: Pre-plan, schedule. SCM landscape is shifting; e.g. ground glass

The Putney School New Dorms – Lessons Learned – Pinch Points in the Process

- An eagle eye on submittals is critical. For example, low embodied gypsum board not in submittal but was easy: same cost, lighter weight and half the embodied energy. But not available for fire rated gypsum board
- Incomplete design prior to construction increases stress on process

The Putney School New Dorms – Lessons Learned – Pinch Points

- Top of exterior wall detail -- Attic air-sealing detail
- Truss uplift/partition wall/air barrier problem solving

