BUILDINGENERGY BOSTON

Leveraging the Logic of Offsite Construction: A Gamified Training

Cody Berwick (Bensonwood) Seth Clarke (Bensonwood)

Curated by Megan Nedzinski (Vermont Integrated Architecture)

Northeast Sustainable Energy Association (NESEA) | March 20, 2024

Leveraging the Logic of Offsite Panelization

Seth Clarke, AIA NCARB Director of Preconstruction Bensonwood

SUSTAINABLE ENERGY ASSOCIATION

Cody Berwick Sales Advisor TEKTONIKS

- Sustainability values
- Drivers for success
- Practicum (Games!)
- Wrap-up

What values does Offsite Panelization offer that are mutually conducive to success with High-Performance Building?

Mutual Priorities & Values

- Expanded Access and Affordability
- Energy Efficiency
- Reduced material waste
- Improved Indoor Air Quality
- Transportation Efficiency
- Shorter Construction time
- Green Technology Integration
- Lower Disruption to Surrounding Ecosystems
- Flexibility and Adaptability
- Healthy materials

HOW TO RECONCILE THIS:

Advancing offsite manufacturing technologies and delivery methods are expanding access to high-performance outcomes.

EXPANDED ACCESS AND AFFORDABILITY

ENERGY EFFICIENCY

25% home heating is lost through small cracks and holes

ENERGY EFFICIENCY, INDOOR AIR QUALITY

REDUCING CONSTRUCTION WASTE

Image by TEXASJOHNS

CONVENTIONAL BUILDING METHODS 8,000 pounds (4 tons) waste per average new home

DAMPNESS DURING CONSTRUCTION

IMAGE: U.S. Department of Energy

DAMPNESS DURING CONSTRUCTION

WINDOW TO WALL RATIO

Photo Hugo Hébrard via v2com

PREDEVELOPMENT + QUALITY CONTROLS

High-fidelity 3D modeling

- Direct-to-fabrication machinery
 - Distributed quality control points
 - → 3rd party monitoring

High performance priority

Early team integration

Local climate

Panel logic & Success drivers

Dimensional considerations

Glazing

Aligning to a structural grid

Site considerations

Schedule considerations

Game 1 Passive Prefab Bingo!

- What elements are conducive to panelization and PH principles?
- What elements challenge or defeat this approach?
- What can be done to help it work?

High performance priority

Early team integration

Local climate

Dimensional considerations

Glazing

Aligning to a structural grid

Site considerations

Schedule considerations

UNDERGRADUATE ARTS CENTER

Adopting PH principles

Late stage of design

Cold weather climate, Good south-facing glazing for passive SHG

Unclear how extent of south

Does not conform to 2' grid

Unclear Access to meadow?

Summer 2024! Caneadea, NY Not possible 8,000 GSF

SCHEDULE: Raising desired Summer 2024

SITE: Gently sloping meadow on edge of liberal arts college campus.

PROGRAM: Student facility for graphic and performance art education. Lithography studio and gallery on lower level, with dance studio on upper level. Rooftop solar.

PERFORMANCE: Aiming for PH principles but not certification.

SOUTH ELEVATION

High performance priority

 $\sum_{i=1}^{n}$

Manufactured Homes

Passivhaus Institut

"Passive house principles"

What are the indications that the project aims to be high-performance? Is the project poised to be fossil fuel free?

Early team integration

other offerings

interior/exterior finishes.

 $\sum_{i=1}^{n}$

Is your project already at a late stage in design where incorporating passive house or panelization strategies may be too disruptive?

OFFSITE PANELIZATION

 $\sum_{i=1}^{n}$

Does your manufacturer produce a wall assembly to suit the local climate where you are building?

Dimensional considerations

Multifunction Bridge

State Map of Legal Height Limits

Typical trucking options

And other options. . .

 $\sum_{i=1}^{n}$

Will the design require taller panels than your manufacturer can provide? Does the floor-to-floor exceed 10 foot 6 inches?

Vertical Panels may achieve height but are limited to 8'0" wide.

- More crane picks.
- More joints to seal.
- More fasteners.
- More manual labor in factory.
- More labor on site.
- Panels ship on their side so all windows must be site installed.

 $\sum_{i=1}^{n}$

More cost. More risk.

Can the design be plausibly panelized with standard sized panels?

Glazing

Field prepared and installed

- Exposed to weather
- Costly to subcontract installation
- Responsibility for Air-tightness is shared

Glazing

Factory prepared and installed in ideal conditions.

- Use of specialty lift
- Work at eye-level on the ground
- Openings flashed and sealed

 $\sum_{i=1}^{n}$

- Additional site install cost,
- No roof for structural header above the glass
- likely requires steel

- Opportunity for shop installation (if available)
- higher level of precision.
- All wood framed solution

Can all the windows be factory installed? Does the window-to-wall ratio make all-electric HVAC implausible?

Align to a structural grid

 $\sum_{i=1}^{n}$

Conventional wall framing with studs @ 16" O.C.

Advanced wall framing technique w/ studs @ 24" O.C.

Illustration: SavingSustainability.com

Does the building structure conform to a dimensional grid?

Site considerations

 $\sum_{i=1}^{i}$

Does the site allow for crane/trailer access and lay-down space? Are there low hanging wires or branches that make crane work impractical?

Schedule considerations

Schedule Considerations

STAGE	AUG	SEPT	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	ОСТ	NOV
DESIGN / COORDINATION		nal construct		NOV		JAN		MAN			JON	JOL		JLM		
PERMITS / APPROVALS																
SITE CLEARING / GRADING																
FOUNDATION																
FRAMING / RAISING																
FIT-OUT / FINISH																

Schedule Considerations

 $\sum_{i=1}^{n}$

Will the schedule allow 26 - 30 weeks between design sign-off and raising? Will it be mud season on site during delivery and raising?

Game 2 Win, Lose or DRAFT!

Design a rapid façade study that uses PH principles balanced by sound panelization logic.

- 15m table work
- 10m shares around the room

High performance priority

Early team integration

Local climate

Dimensional considerations

Glazing

Aligning to a structural grid

Site considerations

Schedule considerations

PROGRAM: Sketch two façades for a suburban community center for youth recreational and sports activities, split over three floors, plus a roof deck with community gardens.

LOCATION:Ann Arbor, MISIZE:18,000 GSFBUDGET:\$8.6m

SITE: Corner lot in a Commercial zoned area with a limited street frontage of 100 feet on the South side and 60 feet on the West.

HAND SKETCH CONTINUUM

Wrap up

 Pin up the work
Complete evaluations
Visit Booth 29 info@bensonwood.com

TEKTONIKSBensonwood

