

Enabling Decarbonization through Air Sealing

Maggie McCarey Bill Shadid Tom Holmes

Presented at 2024 NESEA Building Energy Boston 3.20.24

©2024 Aeroseal® All Rights Reserved, Confidential Information.

1 2151

Today's Speakers

Maggie McCarey

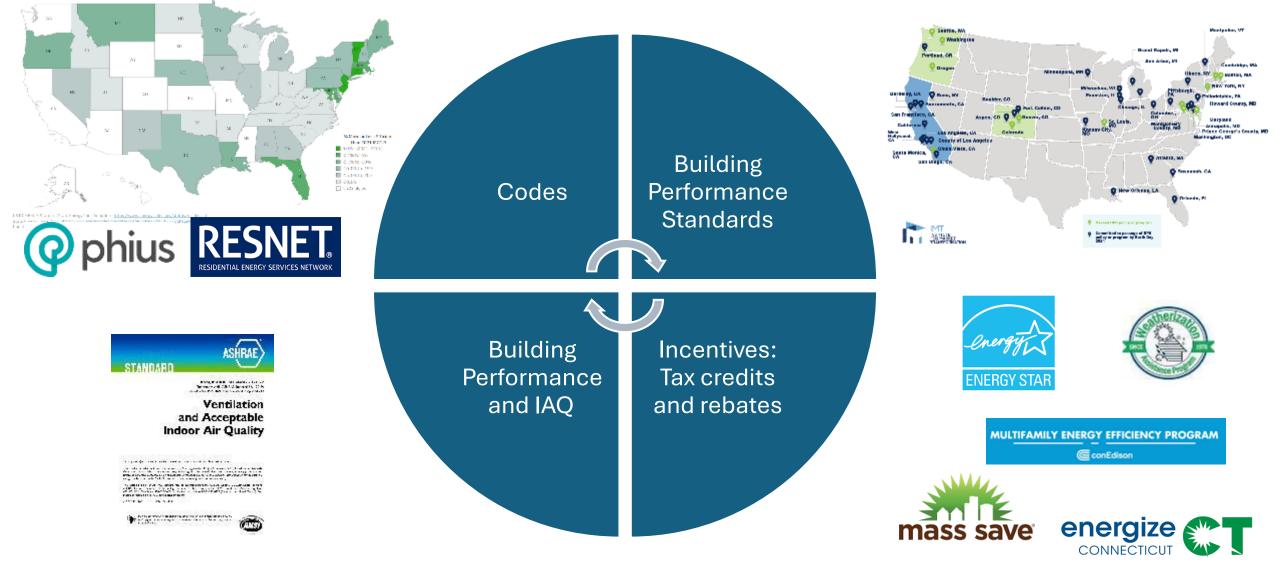
- Head of Policy and Market Development
- 15 years of energy efficiency and building decarbonization policy
- Former MA DOER Energy Efficiency Director

Bill Shadid

- Strategic Marketing
- Over 25 years in the building industry
- 16+ years in sustainable building technologies
- 9+ years as a sustainable architect

Tom Holmes

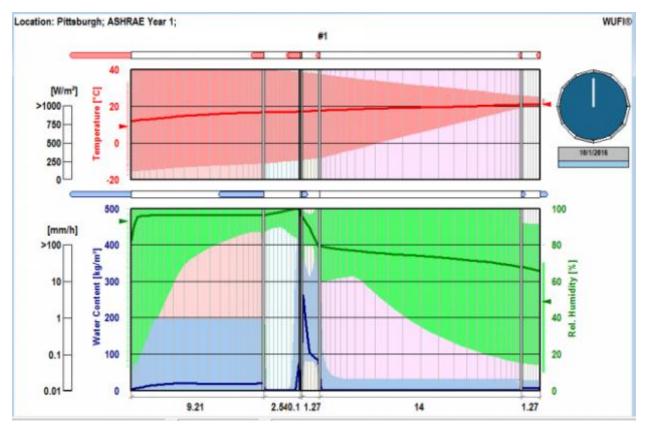
- Northeast Commercial Business Manager
- 20+ Years Designing & Implementing Building Performance Projects
- Specialist in Existing Building Envelope & Ventilation



State of the Market: Why Sealing?

Residential Energy Code: State Energy Index Relative to Current Model Code (2021 IECC)

The State of Building Performance Standards (BPS) in the U.S. Members of the National BPB Cealitien as of December 2023



Multifamily Envelope Air Sealing: New Construction

Air Sealing is Even More Important in Highly Insulated Assemblies

The less the drying potential The more air tight the assembly should be.

WUFI output courtesy of Green Building Advisor

Air Leakage Is A Large Contributor to Carbon Emissions From Housing

- The US DOE estimates that uncontrolled air leakage accounts for as much as 40% of energy use
- Air sealing the building envelope can greatly reduce the energy use and carbon emissions of the house

Additional Benefits of Sealing the Multifamily Envelope (Ext & Party Walls)

Experience dramatic savings on home heating and cooling

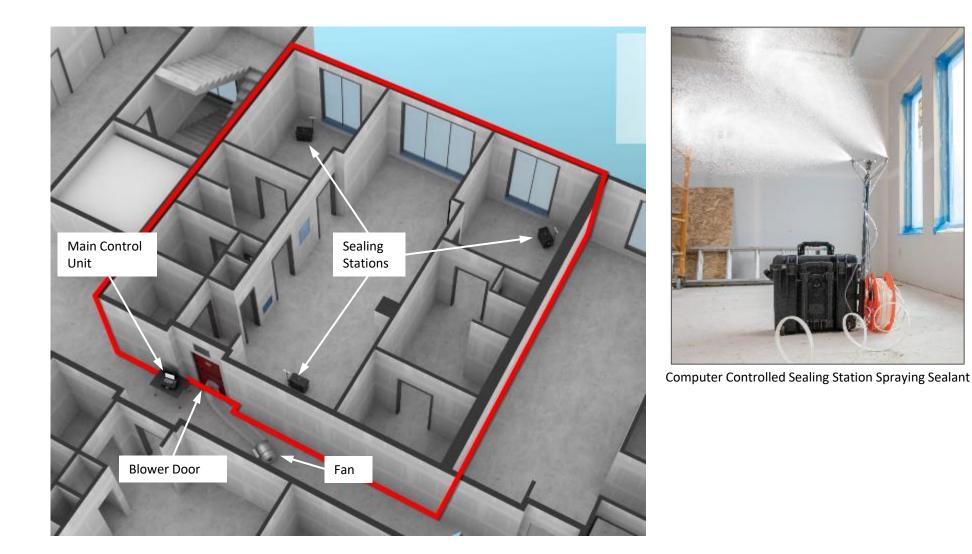
Enjoy a more comfortable home

Diminish noise – from exterior & adjoining units

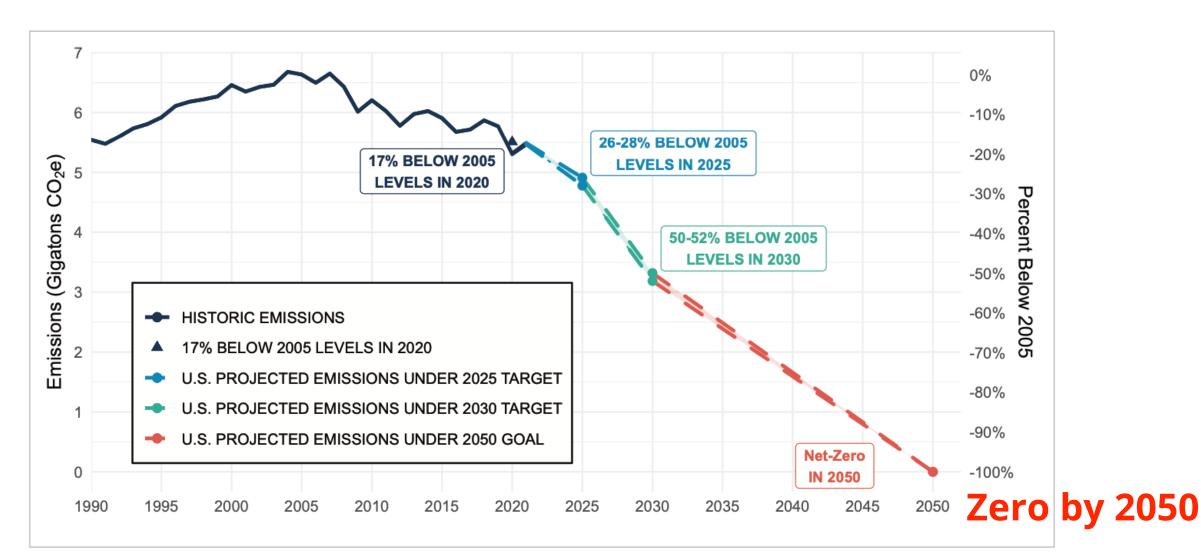
Improve indoor air quality – from exterior & adjoining units

Defend against insects and pests

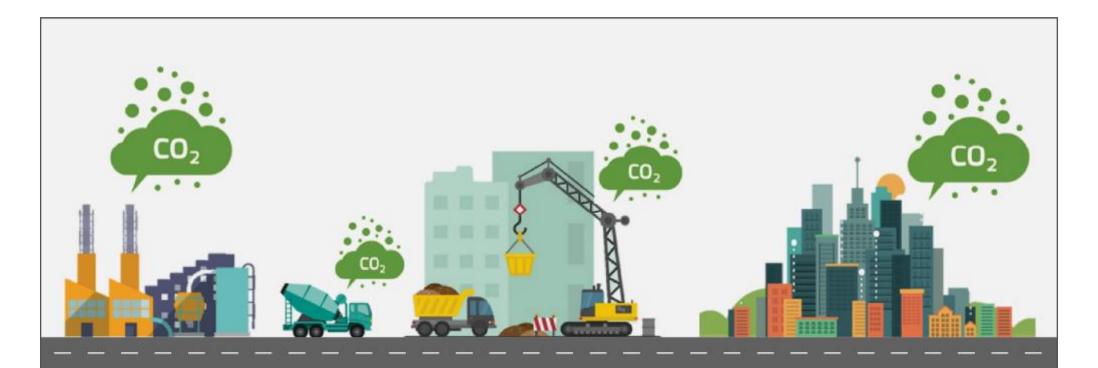
Air Sealing Methods Overview: Manual



Air Sealing Methods Overview: Automated & Blower Door Directed



Carbon Impact of Housing


The New Imperative: Greenhouse Gas Emission Reductions

aeroseal.

Types of Carbon Impact

'Upfront' Embodied Carbon

Manufacturing, transportation, and installation of construction materials

Operational Carbon

Building energy consumption

Operational Carbon Reduction Options: Reduce the Building's Energy Use

HVAC

Windows & Doors

Basement Insulation

Caeroseal

Exterior Insulation

Embodied Carbon Impacts of Envelope

Adds More Embodied Carbon

Rigid Foam Insulation

Spray Foam Insulation

Insulated Sheathing

Windows & Doors

Adds Less Embodied Carbon

Natural Material Insulation

Air Sealing

Fiberglass Insulation

Envelope Air Sealing: The Most Carbon Reduction Bang For The Buck

- Biggest impact on operational carbon
- With the lowest cost
- And the lowest embodied carbon impact

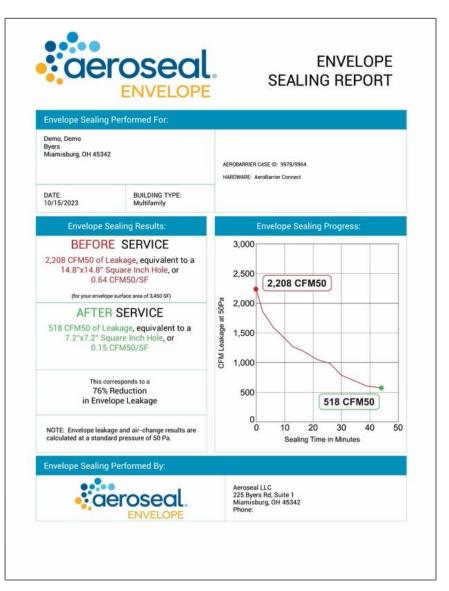
Carbon Assessment Tools Available

Embodied Carbon

- Building modelling software
- Inputs from product manufacturers
- Examples:

- Energy modelling software
- Fuel source emission factors
- Examples:

AeroBarrier Multifamily Air Sealing Overview Video



Watch AeroBarrier Multifamily Air Sealing Overview Video here

AeroBarrier Envelope Sealing Report

An Envelope Sealing Report is generated for every exterior envelope and multifamily unit sealed

AeroBarrier Air Leak Sealing Examples

After AeroBarrier sealing examples showing incremental sealing vs. other methods

Around electrical box

Joint in wood subfloor above basement

Around exterior door

Case Study: Multifamily Passive House Harvard University Student Housing

Details for 2 Projects:

- Harvard University Student Housing apartments
- Renovate historic structures to passive house standard
- 13 Kirkland Place, Cambridge, built 1856 4 units
- 5 Sacramento St, Cambridge, built 1891 7 units
- Historic status prevented exterior changes
- Insulation and air sealing done from the inside
- Goal was to meet Phius certification standards
- Installer = New England Air Barrier

Results with AeroBarrier:

• AeroBarrier enables achieving passive house air sealing requirements

Case Study: Multifamily Avalon Bay Brighton

Project Details:

- Avalon Brighton Apartments
- Boston, MA
- 180 units
- Natural gas supply issues forced use of electric heat pumps
- AeroBarrier used for compartmentalization of all units

Results with AeroBarrier:

- Exterior envelope sealed during compartmentalization
- Before AeroBarrier = 6-8 ACH50
- After AeroBarrier = all units below 3 ACH50, average = 2.63 ACH50

Case Study: Multifamily Passive House 153rd Street Apartments

- 153rd Street Apartments
- Upper West Side, Manhattan, New York, NY
- 32 units
- AeroBarrier used for compartmentalization

Situation Before AeroBarrier:

- Apartments mostly complete and unable to achieve passive house requirement for air tightness between units (compartmentalization)
- Significant time and \$ spent in prior attempts to achieve air sealing requirement
- Build was not able to progress to completion

Case Study: Multifamily Passive House 153rd Street Apartments

Project Results:

- Passive house compartmentalization requirements were achieved
- 32 apartments were sealed in 8 days
- Project was able to move to completion and occupancy

"It was blowing people's minds – mostly because monitoring compartmentalization in a multi-family building under construction is typically a very difficult, time consuming task. The level of coordination and commitment you need to get from all contractors on the job is as critical as it is nearly impossible to achieve. With AeroBarrier, it's simply not a problem." Chris Benedict, Architect

Case Study: Multifamily Passive House Pax Futura Apartments

Project Details:

- Multifamily apartments
- Seattle, WA
- Seattle's first Passive House apartments
- 32 studio & 1 BR units
- AeroBarrier used for compartmentalization on Level 1
- Installer = Ekovate

Results:

- Before AeroBarrier = 3.6 ACH50
- After AeroBarrier = 0.21 ACH50
- 94% reduction in air leakage

Case Study: Multifamily Passive House Pax Futura Apartments

AeroBarrier Sealant at Bottom of Party Wall

AeroBarrier Sealant at Exterior Wall

Case Study: Multifamily Net Zero Soleil Lofts Apartments

Project Details:

- Multifamily Net Zero Energy
- Soleil Lofts, The Wasatch Group
- Herriman, UT
- 600 units, solar, all electric
- AeroBarrier used for compartmentalization

Case Study: Multifamily Net Zero Soleil Lofts Apartments

Needed to cut energy consumption in half to meet performance targets and modeling showed air sealing was the best option

Mechanical Changes:

- 3-bedroom units were modeled to get a 3.5-ton gas furnace.
- Goal was to reduce mechanical equipment costs if possible

"We looked at other energy efficiency measures, including lighting and appliances, but energy modeling showed us they aren't as cost-effective as air sealing." The Wasatch Group

Case Study: Multifamily Net Zero Soleil Lofts Apartments

Project Results:

- 3 bedroom units were planned to have a 3.5 ton gas furnace
- Sealed with AeroBarrier to 1ACH50
- Now able to use 1.5 ton VRF electrical heating/cooling system
- 50% reduction in HVAC costs
- Energy use reduction of 50% supported use of PV solar to achieve Net Zero
- Utility rebates totaled substantially more than the cost of AeroBarrier
- Largest Net Zero project in Utah

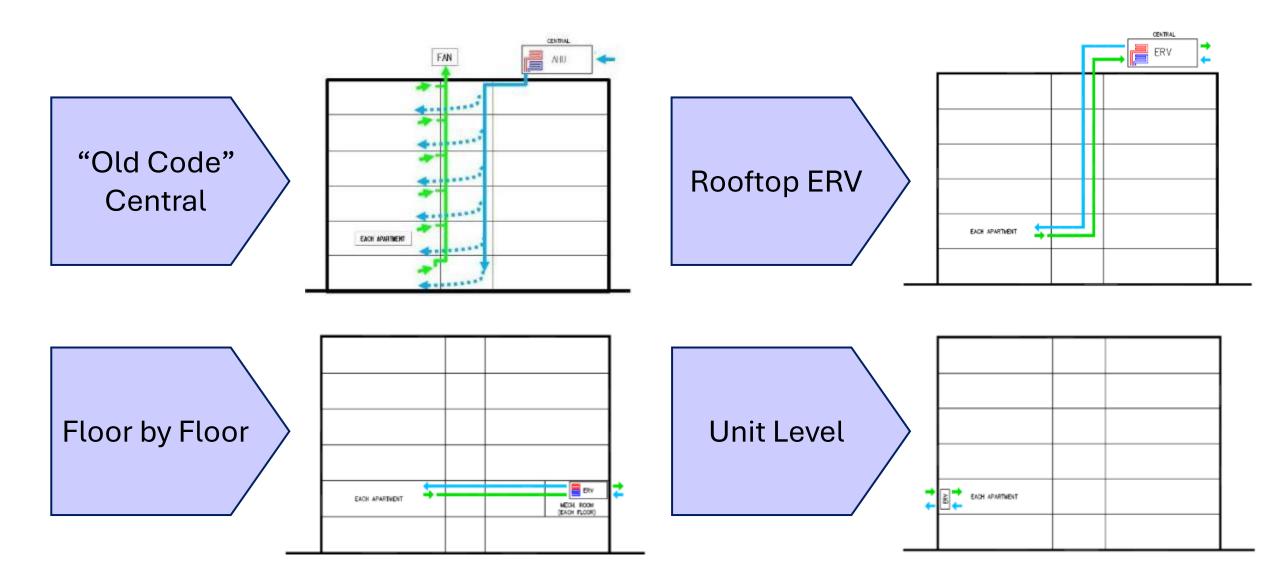
Project Details:

- Multifamily Energy Star & 3 ACH50
- River Glen Apartments, Signature Const.
- Rochester, MN
- 208 units, Low Income Housing
- 160 units 100% finished, 48 unfinished

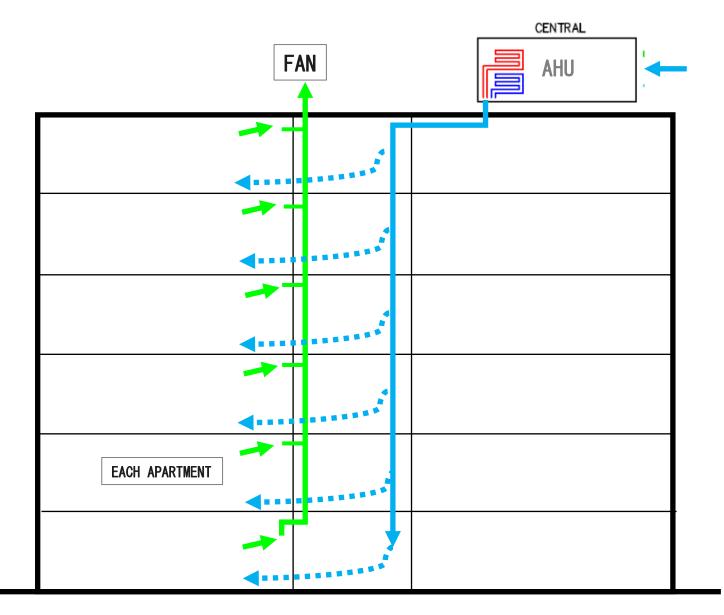
Customer Pain Points:

- Mostly complete affordable housing project couldn't meet air tightness requirement and allow occupancy of apartments
- Poor windows and mechanical dampers
- 40+ families in temporary hotel housing

Project Results:


- Pre air sealing = 6.5 ACH50 average/unit
- Post air sealing = 1-1.5 ACH50 per unit
- Air tightness requirements met and families able to move out of hotel and into apartments
- Air sealing helped qualify for 45L on 50% of the units
- Now AeroBarrier is mandatory for Signature Construction in states requiring an ACH50 of 5 or less
- Signature Construction builds in 15 states

Multifamily Duct Sealing: High Performance Buildings


System Types

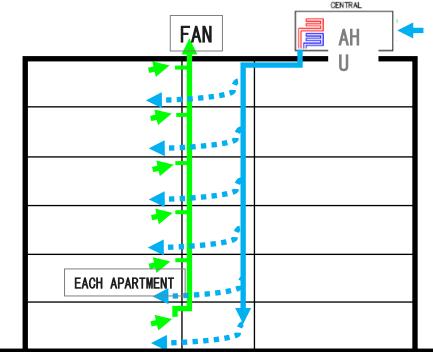
"Old Code" Central (Converted to ERV)

MR FLOOR	1	1	0	<u>H</u>	<u>UA</u>		<u>0.4-16 07</u>	<u>en a</u>	<u>#15</u>	<u>04</u>	-5	<u>03</u>	1 <u>3</u> <u>U</u>	1 -12	0.8	-	<u>u.=11</u>	<u></u>	1 (SI, 11)	-1		0.4-10	E.4235
10 800 1225'-4" 2	FE	(36) (35)	<u>- B</u> 	100 24+10	<u>ा</u> भ _{रह)}	ECC ED-	1848		16x8 (36)	E.	H_(36)_24x10	1848	<u>в</u> Цъ	18:6	F	- (m)	N-	<u> ह.िन्</u> म ₍₃₅₎	(35) (35)		L _{cis} l		E.+225
H FL +215/-47	(20)			24e10 (35)	(35)	01810	(35)	(30)	(35)	(25)			(30)	(38)	(35)			(35)		- (35)	640	(38)	2014 PL 24415
H FL + 2067 - 27	(25)	ч л	- P.,	-20x12	(35)				- 	100	ч . (35)			(<u>15)</u>	30. 100	And A	I	(35)	(25)	+ <u>1</u> 50		(35)	
D FL																							2380 R
0 R.		(36)		(36)	(35)		(36)		(36)		(36)		(36)	(35)	(36)		(35)			(38)		4(36)	2210 FL
T RL 1807 - 47	(35)			(36)	(36)		(36)	(30)2x10			1,510		Ч ₍₃₅₎	+(35)	(35)		(35)			(36)		4(56)	216T FL
H R.		(36) 20x10		(36) 20x10	(36)	H(36) 30×10	+(36)	4(36)	(36)	(35)	(35) 20×10			+(36)	(35)	(35) 20+10	(35)	(35) 20x10	(35)	H(36) 30x10		4(36)	27H FL
H R. H R.				(36)	(35)		(36)	+(36)	+(36)		H(36)		Ч . (36)	+(36)	(35)		(35)		(36)			(36)	10H FL
H R.		(36) 15x10		(36) 18x10	(36)		+[36)	(36)	+(36)	(35)	-1ax10		H(36)	+(36)	(35)			(35) 18x10				+(56)	S INTER
H R.		(35)		(36)		- Dento	(36) Ex6	4(36)	(35) 18e5		-1 ₍₃₅₎			[36] Bar	(35)		(35)			(35) 35a10			01H R. 2.4103
H R.		(35) 		(35) 	(35)			(35) 12x8	(35)	(35)	(35)		(3s)	H(35)	(35)	(36) -16a10	(39)	(36) 16x10		Т(ās) Т		H(3s)	- 104 R.
H R.				(35)	(35) L (35)		(35) (35) (35)	(35)	(35)		1		100	1005			(35)			Ť.		(35) 15+5	2014 R.
H R.		(30) (30) (30)		(35) 14×10				(38)	(36)		(35) (35)			(35)	(35)		(35)	(35) 6x10	(33)	+(35) +(35) (35)		+(35) +(35)	241H R.
N R.		·(38)		(35)	(35)		(38) (495) (495)	+(38) (38)	+(35) +(35)		·(35)			+(30) 	(35)		(35)			·(38)		(38) (38)	2014 R.
H R.		·(36)		(35) +(36)	(35).			·(38)	(35)		·(36)		-(25) 	·(35)	(35).		(35)			·(36)		(36)	127H R. 2.4101
H R. +92"-10"		(36)		(36)		(36) +(36) 0x10		•(36)	(36)		·(35)		·(39)	·(36)				(35)				(36) +(36)	0 11 R. 2.492-
N R. +54'-1"	(35)	(35)	(36) ·			<u>+</u>	(36)	(35) (35) (35)	(35)	(35)	(35) 14x8		-(35)	(36)	(35)	(392.14s8 (44)	(35)				// 19	(36)	0.101H RL 0.4897-
1 RL 175'-4"		12:0	E.,	71200 mm		(38) <u>0-3</u>	1209	-+(38)			1				0 1 1 2 1 3		(35)				(35)		<u>пн п.</u> 2.+/6-
FE-0"		(33) (33)) (3) (3)		(30) (2x6 (35) (35) (35) (35) (35) (35) (35) (35)	- (35) - (35)	(30) (35)	(35)		10		-(35) 	(33) (32 (35) (32			(30)	(35) 10x10(35) (35) (35) (35)			(35)	4(38)	111 FL 2.1+11-
FL.		10x8	13			(25) (35) (35) (35)		(.2.) (.2.)			5				, 4		(35)			1040			21H FL 21+57-
1 FL. † 48' = 5"						(35) (35) (35)	10+5	() +(5)	10:05 					10#5	5 5			-1(35) (35)				10x8	0 00 PL
39 ⁷ - 1°		1(35) (35)		1. (35)		(38) (35) (35) (35) (35)		-845 (20) 	(28) (28)	(35) - (35)			H(35)	(35) (35) (35) (35)				(35) (36)					<u>- 111 PL</u> - 111 PL
31'-0'	(35)	(35) (35)	- H de	1_ (35)	136)					1351 1351					÷ T	-10x8	(35)				100		2 111 12 12 10 10
PL 22'-2"	- (iii)	(35) (35)	×,			(36) (35) (35)	1(36)	(30)	(35)	(35) (35)		P-1		(35) (32	اکر		(10)		(35) (25)		1 (36)		390 R.
n L 13'−8"																							200 FL

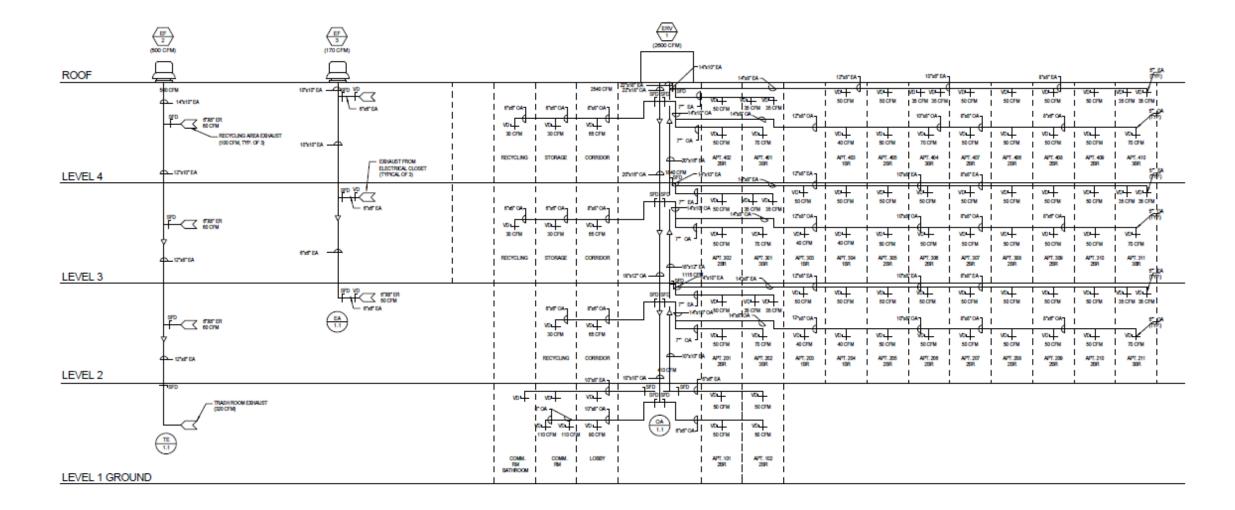
"Traditional" Rooftop Exhaust Only - Schematic

"Traditional" Rooftop Exhaust Only – Make it Work

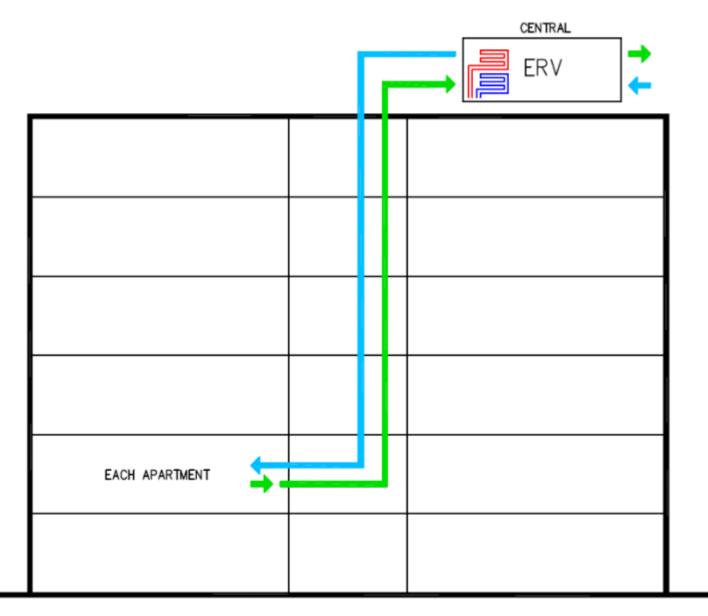
Pros


• It's What We Got

Cons


- 100% "Lost Air" Energy Penalty \$\$\$
- NO DIRECT MAKE UP FRESH AIR
- Ducts Leak, are Blocked or filled with Mold
- Rarely in Balance
- Rarely EVER Work!

Making them WORK

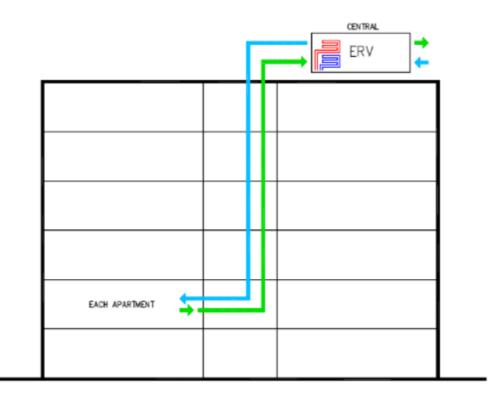

- Seal the "Big Gaps" (10%-15% leakage max)
- Set Design Flows at least 50% above minimum thresholds "gauge" more than measure flows
- Expect that vents will need periodic cleaning/ maintenance
- Can Repair Line By Line

Rooftop ERV with Direct OA Supply

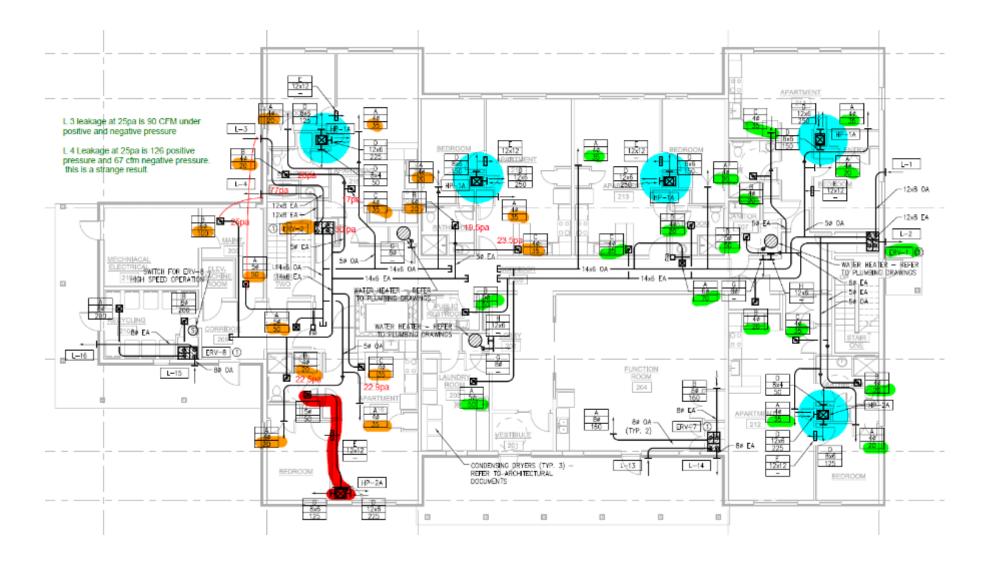
Central Rooftop ERV - Schematic

Central ERV – Make it Work

Pros


- Centralized Equipment
- Energy Recovery Reduces Energy Penalty \$\$
- Modern Systems Provide Unit-Level Make Up Air

Cons


- "Old Code" Systems NO MAKE UP AIR
- Ducts Must Be Really Tight
- Too Many Vent Connections Hurt Performance

Making them WORK

- Really Tight Sheet Metal Ducts (2%-3% leakage max)
- Set Design Flows *at least* 20% above minimum thresholds flows WILL fade farther from the fans (min 35-40 for kitchens; min 30 for bathrooms)
- Expect that vents will need periodic cleaning/ maintenance

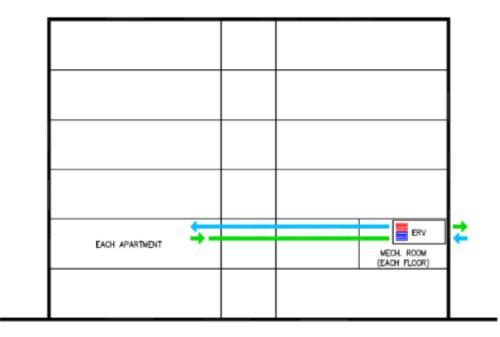
Floor-by-Floor ERV

Floor-by-Floor Ventilation – Schematic

	ERV	+ +
EACH APARTMENT	MECH. ROOM (EACH FLOOR)	+

Floor-by-Floor ERV – Make it Work

Pros


- Energy Recovery Reduces Energy Penalty \$\$
- Eliminates Stack Effect, No Riser Shafts
- Better Building Compartmentalization

Cons

- Mechanical Spaces on Every Floor (Noise)
- Requires Corridor Ceiling Space for Ducts
- More Machines that Require Maintenance

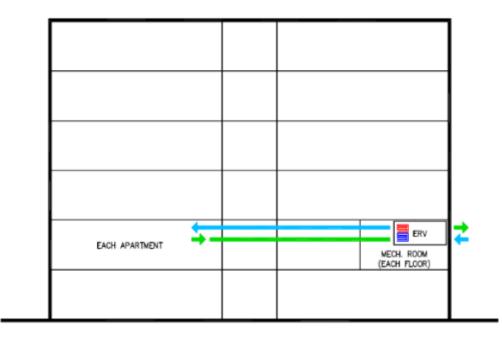
Making them WORK

- Tight Sheet Metal Ducts (5% leakage max)
- Set Design Flows at least 20% above minimum thresholds
- Expect that vents will need periodic cleaning/ maintenance

Unit Level Ventilation – Schematic

→		

Unit Level Ventilation – Make it Work Pros


- Energy Recovery Reduces Energy Penalty \$\$
- Eliminates Stack Effect, No Riser Shafts
- Better Building Compartmentalization

Cons

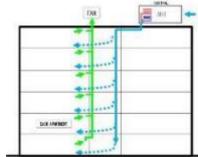
- Mechanical Spaces on Every Floor (Noise)
- Requires Corridor Ceiling Space for Ducts
- More Machines that Require Maintenance

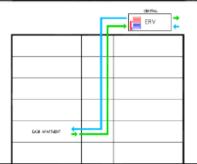
Making them WORK

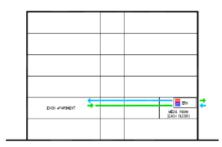
- Tight Sheet Metal Ducts (5% leakage max)
- Set Design Flows at least 20% above minimum thresholds
- Expect that vents will need periodic cleaning/ maintenance

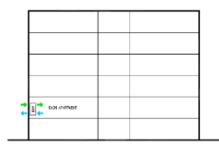
System Types: Pros & Cons

	"Old Code" E	Exhaust Only	Modern Code with In-Unit Make Up Air					
Pro	Central Exhaust Only	Central Exhaust Only ERV	Central with ERV	Floor-by-Floor	Unit Level			
Already Installed in Existing Building	V	V						
Centralized Equipment	V	$\overline{\checkmark}$	$\overline{\checkmark}$					
Mechanical Access from Common Spaces Only	\checkmark	V	\checkmark	$\overline{\mathbf{A}}$				
Up to 75% Energy Recovery		$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\mathbf{A}}$	\blacksquare			
Direct Make Up Air to Apartments			\checkmark	$\overline{\mathbf{A}}$	$\mathbf{\overline{A}}$			
No Riser Shafts				$\overline{\mathbf{A}}$	\blacksquare			
Easier to Balance				$\overline{\mathbf{A}}$	$\mathbf{\overline{A}}$			
Better Compartmentalization				$\overline{\mathbf{A}}$	\blacksquare			
No Fire/ Smoke Dampers					V			
Occupant Pays for Energy Use					$\overline{\mathbf{A}}$			
Occupant Controls Ventilation Directly					\checkmark			


System Types: Pros & Cons


	"Old Code" I	Exhaust Only	Modern Code with In-Unit Make Up Air						
Con	Central Exhaust Only	Central Exhaust Only ERV	Central with ERV	Floor-by-Floor	Unit Level				
100% Lost Air	×								
Duct Risers Penetrate Floors	×	×	X						
Make-up Air Equipment Outside Envelope	×	×	X						
Stack Effect	×	×	×						
Fire/ Smoke Dampers	X	×	×	X					
Uses Corridor Ceiling Space				×					
Multiple Inside Mechanical Spaces				×	×				
In Unit Mechanical Service					×				
Unit-Level Thru-Wall Penetrations					×				


Commissioning: The Ducts


Was it Built to Design?

- Multi-unit systems are COMMERCIAL
 - Fans designed for operating flow/ SP
 - Ducts designed for a known leakage
 - ✓ Tolerances should reflect project parameters
 - ✓ Put it in the specs
- In-unit systems are RESIDENTIAL
 - ✓ **RESNET, PHIUS** put it in the specs

How Tight is Tight?

Manual Vent Damper

128 1496 L																							EL+244
R FL OOR #235/4*		<u>+1</u>	<u>0</u> . Re-	E	<u></u>		/st	<u>en o</u>	<u>er u</u>	<u>=:</u>	<u>UA</u>	-1	<u>0+0</u> _0	-12	<u>15</u> F		<u>0.=11</u>	N ^Q				<u>+-11</u>	
		H(36) (35)	-74	(16) 1) (16) 24+10	4 ₍₆₀	(35) (35)		*	H(35)	(36)		(3 <u>6)</u> 24x10		18x8 (35)		(36)	24x10	H (35)		34x10	L _{do} l		В 10 № 100 В 1 + 225 Ф 2 2 + 225 Ф 2 2 + 225
215/=4"	(35)	(35)	(ž)	(35)	(35)	(35)		(35)	(35)	(35)		(35)	(35)	(38)	(35)	Ч ₍₃₅₎	(35)	(31)	(35)	(35)		(35)	D D 4 110
11 FL	(25)	9 ₍₃₎	(35) H	-20x12 (20)	(35)	4(35)		(35)	(<u>25</u>)	(35)	(25)	H(35)		(35)	÷	-1(3s)	(35)	(33)	(25)	(25)		(35)	2011 F
0 FL 0 FL	(35)	H(36)	(35)	-+ ₍₃₀₎	(36)	-H ₍₃₆₎		+(36)	-+(30)	- (56)	(38)		H(36)	+(35)	(35)		(38)		(35)	(30)			2380 F
T FL	(35)	4	(35)	(36)	(36)			-+ _{[36)}	(35) 2310	(36)	(36)	H(35)	H(30)	H(36)	00	Ч (3 8)		- (35)	(35)				215T F
H RL	(35)	-20x70	(36)	20x10	(35)	H(36) 32×10		(35)	(36)	(36)		(35) 20×10	(36)	(36)	(35) H	20+10	(35)	20x10		(36) 30x10			2011 F
191°-7" H.R. 162°-10"	(35)		(36)		(35)	+(36) 		+(36)		+(36)		(36)		(36)	(35)		(35)		(36)	28x1D		+(36)	0 0.4 17 0 11 F
H R.	(36)	-15x10 	(36)	18x10	(36)			-+ ₁₃₆₀	4(36)	- 1 360		(35) 	H(36)	(36)	(35)	18e10	(35)	-18×10 -(35) -(35)	(35)			(36)	
H R.	(35) (35)		100		(35)			H(36) H(39)	+(36) +(35)	150 (35) (39)		→(35) →(35)	H(36) H(35)	1.56) 1.56 1.56 1.56	100 100				(10)			+(36) (30) (30)	
H R. 136'-7"	(30)	-16a1D	(35)	16x10	(35)			(35)		(35)		1(35) (35)		(35)	(36) -		(35)	(36) -16x10 	(30)			(35)	DL+10
NR. 1227 – 10" NR.		H(35) 4x10		(35) (4x10	(35)	(35) 24x10		15+5	+(35)	15+5	(35)	(35) 4×10	16.6	16×6		(31) 4+10	(35)	(3s) (4x10	(10)	(35) 		(35)	0 10 H F 0 12 H F 0 10 H F
H R.	(20)		(35)		(35)	4(35)		(35) 14s5	(30) 10x6	(35) 14e5		1(35)	(35)	(30)	(35) H	(35)		(35)	(20)			(35) (4+5)	2411
F110'-4" N.R.	(35)		(35)		(35)			+(38)	(38)	(35)				H(55)	(35)		(35)		(35)			4(35)	С 22400 (1214 р
HID1"-7" HIRL H92"-10"	(35)			(36)				(36)	(36)	(36)		(35)	H(39)	(36)	(36)		(35)	(35)	(35)	(36)		(36)	0 E.410 1014 F E.412
H RL H RL	(2)	H(3) (3) (3) (3) (3)	(35)	1400	(35)	<u> </u>		(36)	(35) 	+(35) +(35)	(35)	(35) (35) 1 468		+(36) +(38)	(36)	(35) (24)	(35)	(39) (39) (35) (),		(36) 20x10		+(35) +(35)	1004 F
R.		(35) (24) (35) (35)	- P.,	71240 <u>104-7</u>				-12:6 	(38)		(2) (2) (2)				- 		(35)	12x1	· · · · · · · · · · · · · · · · · · ·	. 1	12-11 7-1-(36)	(35) 	17H FL EL 170
R.		(35) (35)		(35)		(38) (35) P (38) (35) P	- <u>1739</u> 0×10	·(38)	·(35)	·(35)		10	·(33)		2 13 2 13			(33) 10×16(35)			(38)	·(38)	<u>пн п.</u> п. н. н.
R. 57-3 [°]				(22)		12x4 (32) (32)		(35) 	() ()	+(35)	(3) - (3)	5		H(35) (2	, , , ,		(35)	-fowd -fowd	1204 (35) (35)	(35)	4(38)	4(38)	21H FL 2.197
R. 48'-5"	(2)	H(8) (8)		(35)	(55)	(35) (35)		+(35)	+(5)	+(35)	(3) - (3)		(3a)		5 1-1 3		(35)	H(Bt) (E)		(2)		+(35)	0 11 11 11 11 11 11 11 11 11 11 11
-30 ⁷ - 1 [°]	(33)	(35) (35)	(33)	0+8 (35)	(35)	(30) (35)	(35) TOUS	(30)	(30)	(38)	(35)	6	(35) (34	(38) (38) (3		5) -10x6	(35)	(35) (35)	(35) (35)	(35)		(35) (35)	0.000 EL+22
131'-0'	(35)	(35) (35)	Tag	(35)	(36)	(36) (35)	(35)	(35)	[35]	(35)	(35) (35)		(35)	(35) (3		5) - 60-5	(35)	(35) e.(35)	(35) (35)	20635	(36) P.	(35) et	281 R
22'-2" n. 13'-6"	(35)	(35) (33)		× (55)	(35)	A (#) (#)	(35)	(36)	(35)	(35)	(35)		(35)	(38) (3		6)	(35)	(iii) (iii)	(33) (35)	(36)	X1(36)	(35)	200 FL
-																							de ur n
-0°-0°									<u>iten:</u> Sheet Metal Co	STRUCTION SHALL	DE CER (SHADA" S	F 0-											P 8.+*-

When it comes to ductwork, there's no such thing as "too tight"!

Self-Regulating Vent Damper (CAR)

Non-invasive Aeroseal Sealant

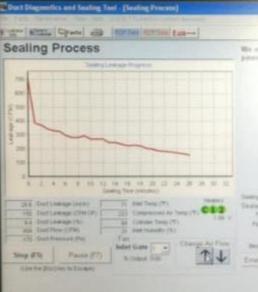
- Seals holes up to 1/4"
- Sealant remains rubbery
- Vinyl polymer is safe (UL Listed)
- No lingering odors or off-gassing
- Lasts 10+ years (3yr warranty)
- Over 25,000 homes and 1,000 commercial buildings

Aeroseal Rooftop Application

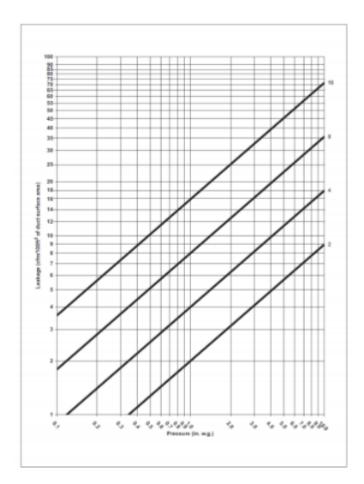
100% Testing & Verification

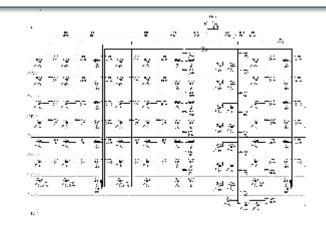
- Test system at operating pressure
- Test to SMACNA Standards using identical protocol.
- Test to percent of flow
- Test from fan to final vent
- Test In/ Seal/ Test Out –

Can be witnessed by engineer or owner's rep.



Commissioning: Percent of Flow Method


- Specified % of Design Flow
- Measures entire system
 - Curb to Vent
 - ✓ Test at OP 1.5 OP
- Can test sections, but subsequent tests should include prior tests until the whole system is measured.
- Can be riskier if they wait till the system is complete


Commissioning: SMACNA Method

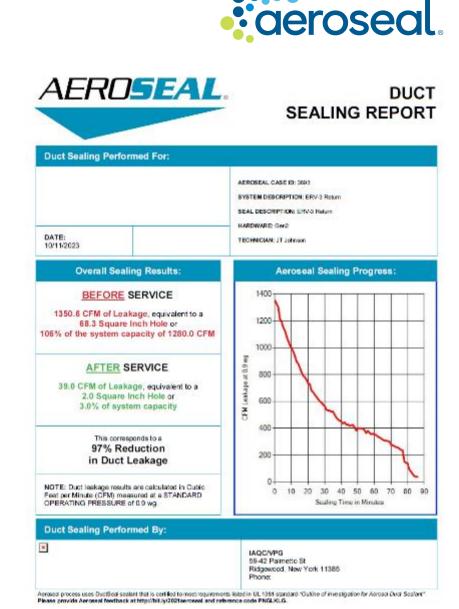
- Seal & Leakage Class Well Defined
- X CFM per 100SF of *DUCT* @ YSP
 - Duct Only Excludes curbs, vent boxes, etc.
 - Done as sampling only throughout construction (when engineers stay on it)
- Lower volume systems with lots of ducts pass at higher leakage percentages

Compare Allowable Leakage

- Size: 8"
- Len: 2,500 ft
- Area: (5,236 SF)
- OP: 1" WG
- Vents: 25 @ 35CFM
- Sys Flow: 835 CFM

SMACNA

- 1" WG
 - Class 2: 105 CFM
 - Class 4: 209 CFM
 - Class 8: 419 CFM
- 1.5" WG
 - Class 2: 136 CFM
 - Class 4: 272 CFM
 - Class 8: 545 CFM


Percent of Flow

- 1" WG
 - 10%: 84 CFM
 - 5%: 42 CFM
 - 3%: 26 CFM
- 1.5" WG
 10%: 84 CFM
 5%: 42 CFM
 3%: 26 CFM

High Performance Building Results

- System Design: 1,280 CFM @ 1"wg
- 51 vents @ 25 CFM per vent
- Test-in Leakage: 1,350 CFM 108% of design
- Test-out Leakage: 39 CFM 3% of design

97% Reduction in leakage – in under 2 hours!

Cambridge Housing Authority

PROJECT OVERVIEW

Cambridge Housing Authority LEED Construction

LOCATION Cambridge, Massachusetts

SERVICE TECHNICIAN P.J. Dionne

AEROSEAL CONTRACTORS Aspen Air Duct Cleaning

GOAL Meet required duct leakage rate of 250 CFM or less in order to achieve LEED certification

BEFORE AEROSEAL Average 900+ CFM* of total leakage

AFTER AEROSEAL Average 40 CFM of total leakage

RESULTS

Met LEED certification requirements; Reduced leakage by approximately 95%

*Cubic feet per minute

I'm a 100% believer in Aeroseal. I wish we had it specified for the job in the beginning.

Don Stock - Project Manager P.J. Dionne

Museum House Condominiums

MuseumHouse Luxury Condominiums

Meet air handling unit (AHU) specifications for

Sealed ductwork to 90% average leakage reduction; Achieved compliance with duct sealing codes and improved HVAC performance of

Aeroseal was the only viable option there was. Our only other alternative was to tear down the walls inside each apartment and seal the individual duct systems manually (by hand with mastic/tape). From a purely monetary standpoint, this approach saved us hundreds of thousands of dollars in renovation costs. Aeroseal works - and works very well, reducing average leakage from about 300 CFM down to around 6 CFM.

> David Hart - Project Manager Yorkville Construction

Multifamily Housing Retrofit Examples

Units	138 Income-eligible
Cost	\$370,000
Annual Savings	83,000 kWh elec 24,500 therms NG
Annual Cost Savings	\$58,600

Units	1,440 (3 market rate bldgs. & 1 income-eligible)
Cost	\$2.7 million
Annual Savings	5 million kWh elec
Annual Cost Savings	\$1 million

Maggie McCarey maggie.mccarey@aeroseal.com

Bill Shadid (937) 607-8137 bill.shadid@aeroseal.com

Tom Holmes (937) 974-5359 thomas.holmes@aeroseal.com

THANK YOU!