# **BUILDINGENERGY BOSTON**

# Slashing Upfront Embodied Carbon: How to Replicate Success

Jim Carreira, Boston Sand & Gravel Beverly Craig, MassCEC Meredith Elbaum, Built Environment Plus Caroline Murray, Turner Construction Company

Curated by Karno Widjaja

Northeast Sustainable Energy Association (NESEA) | March 20, 2025

# 7 Replicable Strategies to Reduce Embodied Carbon





#### **Meredith Elbaum**

**Built Environment Plus** Executive Director



#### **Beverly Craig**

MassCEC Program Director



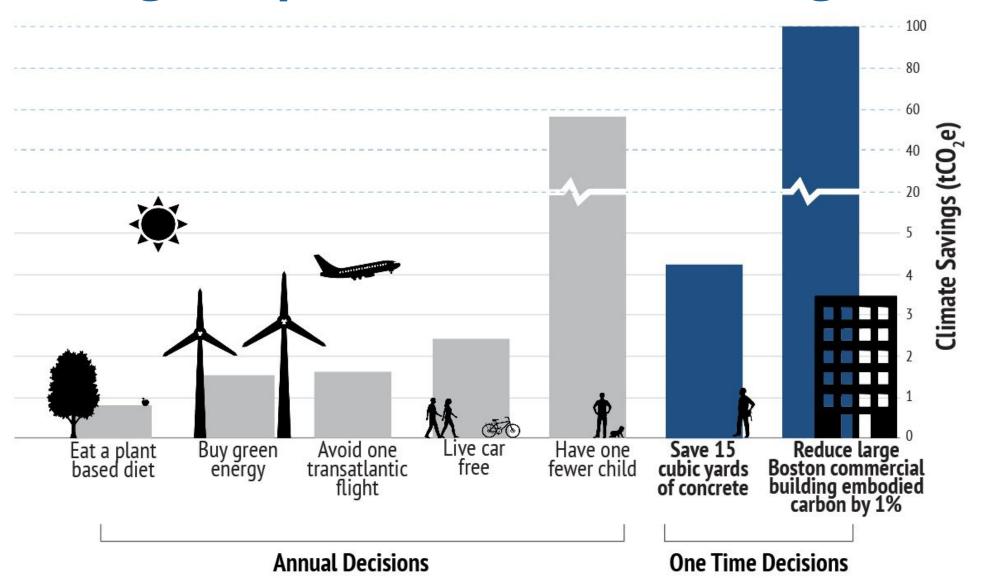
# How to Specify Lower Emissions Concrete Fireside Chat



#### **Caroline Murray**

**Turner Construction Co.** Regional Sustainability Manager






#### Jim Carreira

**Boston Sand & Gravel** Technical Director



# **Building Professionals Can Make** Large Impact with Small Changes





# **EMBODIED CARBON** REDUCTION CHALLENGE

## THE CHALLENGE: REDUCE UPFRONT CARBON OF BUILDINGS

# **7** Strategies











## 16 PROJECTS : 2024 - 2027 Completion



## EMBODIED CARBON **REDUCTION CHALLENGE**

THE CHALLENGE: REDUCE UPFRONT CARBON OF BUILDINGS

#### CHALLENGE TIMELINE: MARCH 2023 - MAY 2024

Unlike speakional carbon emissions, which can be reduced over time with building energy efficiency renovations and reversible energy endeded ration emissions from building materials have ineversibly entered the atmosphere as soon as a builting is built That means the upfort building material choices are critically impactful, and as new construction operations brone nore efficient, embodied carbon impacts become even more significant. On current trajectories, Architecture 2030 estimates entocled carbon will be responsible for almost half of total new construction emissions between 2020 and 2050.

MassEEC launched this Challenge to accelerate embodied carbon reduction in buildings. Over the course of a year BE+ hosted trainings, porided access to resources and held a compension. The 16 project entrants are included in this exhibit. They



EVENTS P

SUMMARY

# **7 STRATEGIES**

## **USE LESS**

Reuse and Rehabilitation

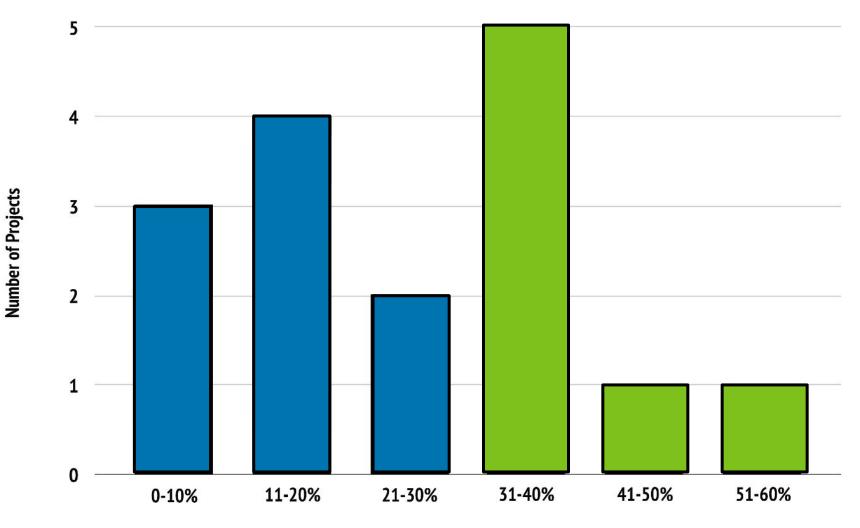
Space Optimization

Interior Efficiencies

#### STRUCTURAL

/ Timber Structure

Lightweight Design


#### PROCUREMENT



Low Carbon Concrete

/ Low Carbon Insulation

## Almost half achieved more than 30% reduction.



Percent Reduction Achieved from Baseline to Proposal



# REUSE & REHABILITATION

## SPACE OPTIMIZATION

## INTERIOR EFFICIENCIES



# REUSE & REHABILITATION

## SPACE OPTIMIZATION

#### INTERIOR EFFICIENCIES



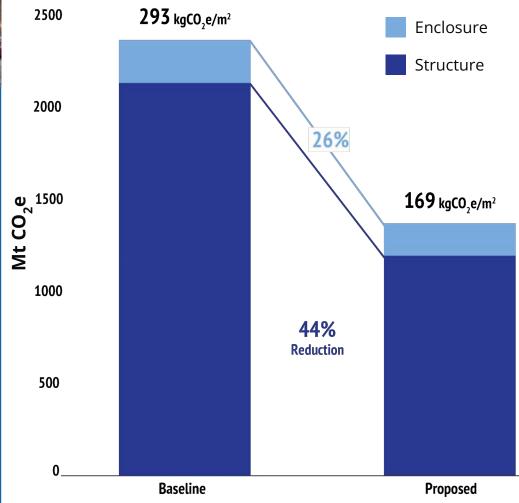
#### STRATEGIES



Reuse and Rehabilitation
Space Optimization
Interior Efficiencies

**Timber Structure** 




Structural

Low Carbon Concrete

Low Carbon Insulation

# 80 West Broadway

Submitted by Stantec Architects Boston, MA



#### REUSE AND REHAB

**42%** Embodied Carbon Savings

**999 MtCO<sub>2</sub>e** Embodied Carbon Savings

**Timber Structure** Most Impactful Strategy



## **Jones Library**

Amherst, MA Public Assembly - Major Renovation

<u>Completion Year</u> - 2026

Renovating and expanding one of the "most dysfunctional libraries in the Commonwealth;" improving safety, user friendliness and efficiency.



**Reuse and Rehabilitation** 

#### STRATEGIES

| ess   |   |
|-------|---|
| lse L |   |
|       | _ |

 $\checkmark$ 

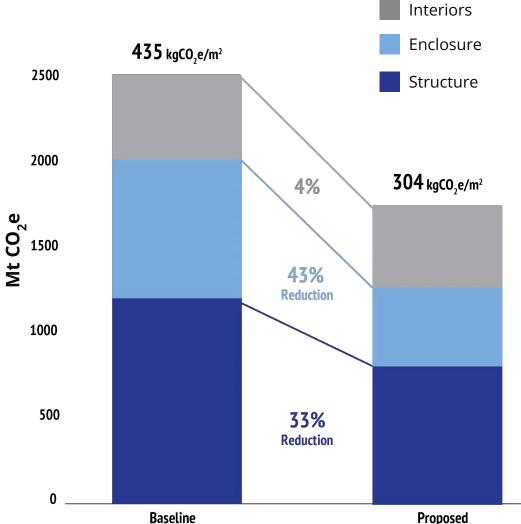
Interior Efficiencies

**Space Optimization** 



Lightweight Design

Timber Structure


Procurement

Low Carbon Insulation

Low Carbon Concrete

# **Jones Library**

*Submitted by Finegold Alexander Architects* Amherst, MA



#### GRAND PRIZE WINNER

30% Embodied Carbon Savings 744 MtCO<sub>2</sub>e

Embodied Carbon Savings

## Reuse & Rehabilitation

Most Impactful Strategy



# REUSE & REHABILITATION

SPACE OPTIMIZATION INTERIOR EFFICIENCIES



#### Sustainable Engineering Laboratories

Amherst, MA Laboratory - New Construction

Completion Year - 2026

<u>Certifications (Expected)</u> ILFI Zero Carbon, LEED Platinum

Functioning as a living laboratory that represents UMass Amherst's sustainability and carbon neutral goals



**Reuse and Rehabilitation** 

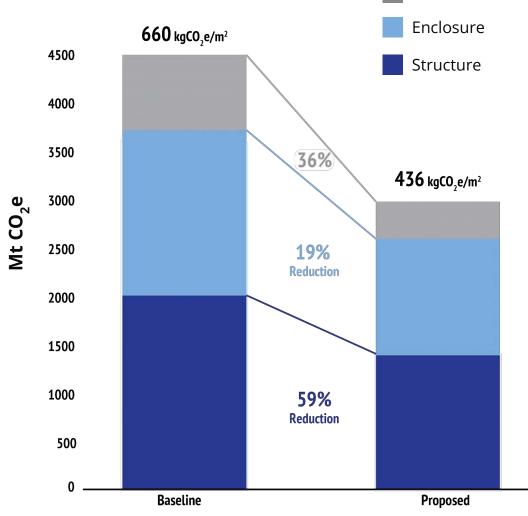
#### **STRATEGIES**

**Jse Less** 



Interior Efficiencies

Space Optimization




Timber Structure Lightweight Design



## **Sustainable Engineering** Laboratories

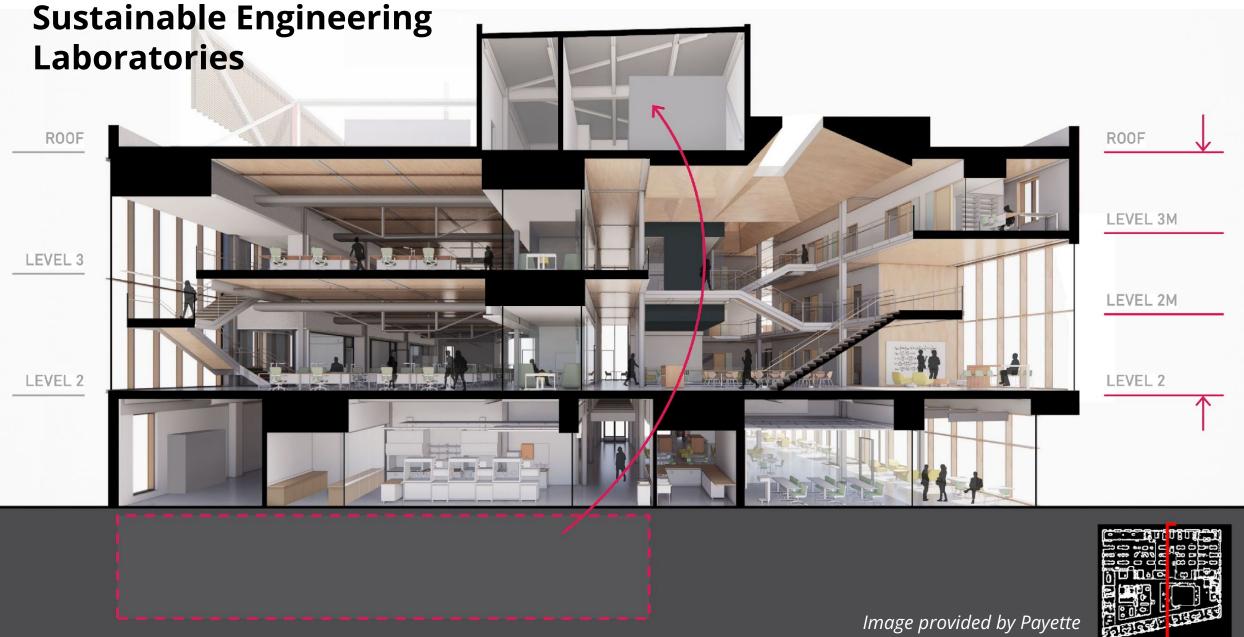
Submitted by Payette Amherst, MA



Interiors

#### **GRAND PRIZE WINNER**

Embodied Carbon Savings


34%

## 1528 MtCO<sub>2</sub>e

Embodied Carbon Savings

**Space Optimization** Most Impactful Strategy

#### Space Optimization



Space Optimization

## Sustainable Engineering Laboratories



PROJECT DATA NSF: 41, 700 GSF: 73,420 NET TO GROSS: 57%

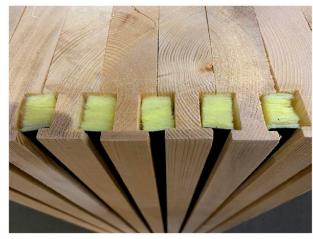


SD > DD -3% NET PROGRAM -15% GROSS AREA -25% STEEL TONNAGE

Image provided by Payette

**USE LESS** 

# REUSE & REHABILITATION


## SPACE OPTIMIZATION

## INTERIOR EFFICIENCIES

Interior Efficiencies

## Sustainable Engineering Laboratories





DOWEL-LAMINATED TIMBER WITH INTEGRAL ACOUSTIC KERFS (NRC: 0.7)



OPEN LAB LOFT / WORKSHOP WITH DLT STRUCTURE

Image provided by Payette

# **STRUCTURAL APPROACHES**

#### TIMBER STRUCTURE

#### LIGHTWEIGHT DESIGN

# **STRUCTURAL APPROACHES**

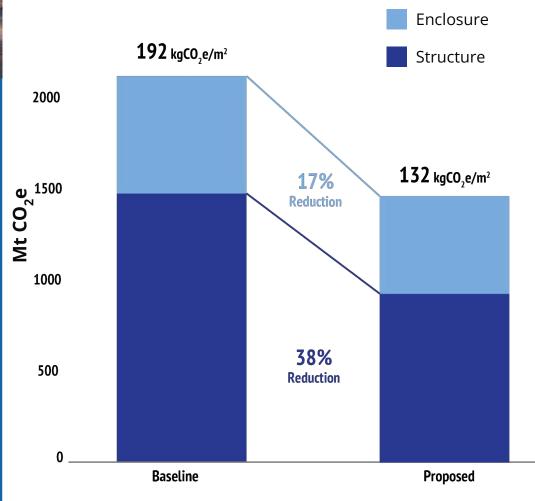
#### TIMBER STRUCTURE

#### LIGHTWEIGHT DESIGN





Lightweight Design


Procurement

Low Carbon Insulation

Low Carbon Concrete

## **Bunker Hill Housing -Building M**

Submitted by Elkus Manfredi Architects Boston, MA Interiors



#### TIMBER STRUCTURE

Embodied Carbon Savings

31%

#### 664 MtCO<sub>2</sub>e **Embodied Carbon Savings**

Timber **Structure** Most Impactful Strategy

# **STRUCTURAL APPROACHES**

#### TIMBER STRUCTURE

### LIGHTWEIGHT DESIGN



#### **STRATEGIES**

| SS |  |
|----|--|
| Ë  |  |
| SG |  |
| Ő  |  |

**Reuse and Rehabilitation Space Optimization Interior Efficiencies** 



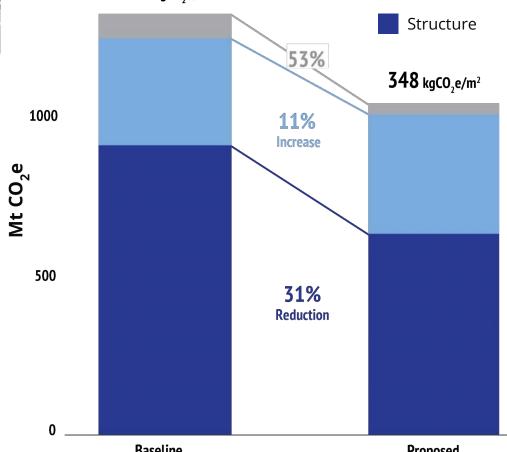
Timber Structure Lightweight Design

Low Carbon Insulation

Low Carbon Concrete

# **Cooper Center for Active Living**

Submitted by The Green Engineer


### Newton, MA nteriors Enclosure 476 kgC0,e/m<sup>2</sup> Structure 53% **348** kgCO<sub>2</sub>e/m<sup>2</sup> 11% Increase 500 31% Reduction Baseline Proposed

#### TIMBER STRUCTURE

27% Embodied Carbon Savings

#### 380 MtCO<sub>2</sub>e **Embodied Carbon Savings**

**Timber Structure** Most Impactful Strategy





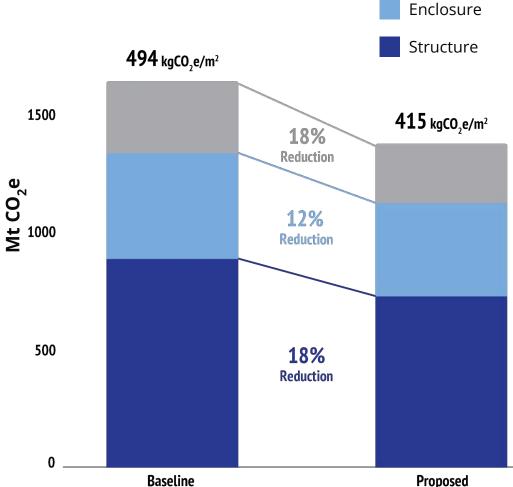
#### **STRATEGIES**

**Jse Less** 

Structural

rocurement

**Reuse and Rehabilitation** Space Optimization


**Interior Efficiencies** 

Timber Structure Lightweight Design

Low Carbon Concrete ow Carbon Insulation

# **Mass Maritime Lab Modernization**

Submitted by Ellenzweig Buzzards Bay, MA



Interiors

#### LIGHTWEIGHT DESIGN

16% Embodied Carbon Savings 263 MtCO<sub>2</sub>e Embodied Carbon Savings

Lightweight Design Most Impactful Strategy

# PROCUREMENT

#### LOW CARBON CONCRETE

LOW CARBON INSULATION

# PROCUREMENT

#### LOW CARBON CONCRETE

LOW CARBON INSULATION



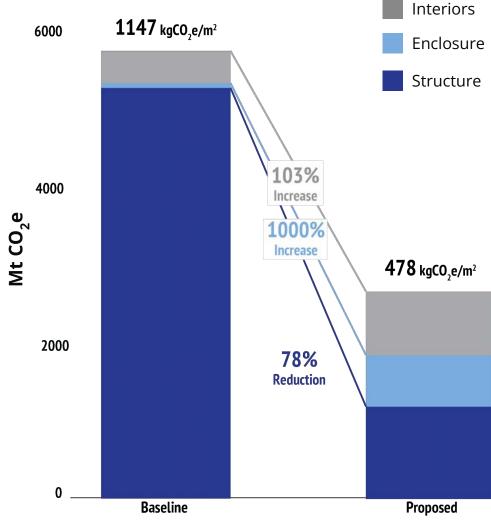


Jse Less

Structura

rocurement

Space Optimization Interior Efficiencies


**Reuse and Rehabilitation** 

Timber Structure
Lightweight Design



## David Rubenstein Treehouse Conference Center

Submitted by Harvard University Boston, MA



#### LOW CARBON CONCRETE

**58%** Embodied Carbon Savings

#### **3357 MtCO<sub>2</sub>e** Embodied Carbon Savings

**Timber Structure** Most Impactful Strategy

# PROCUREMENT

**LOW CARBON** 

**INSULATION** 

#### LOW CARBON CONCRETE



#### **STRATEGIES**

**Reuse and Rehabilitation Space Optimization** 

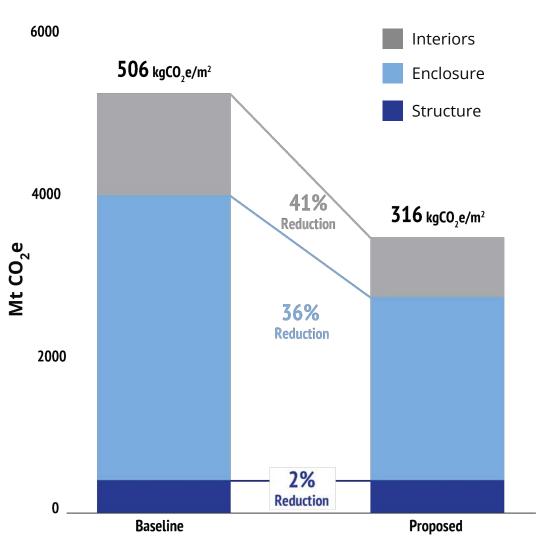
**Interior Efficiencies** 

Structural

**Use Less** 

<sup>o</sup>rocurement

Lightweight Design


Timber Structure



Low Carbon Insulation

## 2400 Mass Ave

Submitted by Linnean Solutions Cambridge, MA



#### LOW CARBON INSULATION

38% **Embodied Carbon Savings** 2003 MtCO<sub>2</sub>e

**Embodied Carbon Savings** 

## **Material Optimization**

Most Impactful Strategy

SUMMARY

# **STRATEGIES RECAP**

## **USE LESS**

Reuse and Rehabilitation

Space Optimization

/Interior Efficiencies

#### STRUCTURAL

/ Timber Structure

/ Lightweight Design

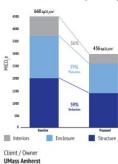
#### PROCUREMENT



Low Carbon Concrete

/ Low Carbon Insulation

## **1st Whole Building LCA for 50% of Participants**


# TALLY A A A A A A A ONECLICK A A A A A A A A A ATHENA A A A A A A A A



#### Sustainable Engineering Laboratories

#### Embodied Carbon Challenge Results

34% 224 kgCO.e Reduction per m<sup>2</sup> Reduction of Carbon Space 1,528 MtCO.e Optimization Reduced from Baseline Most Impactful Strategy



**Competition Participant** 

Payette

Project Type Laboratory - New Construction

WBLCA Software

Tally

Anticipated Completion Year

2026 Location

Amherst, MA

Primary Structural System Mass timber + steel





#### nnovation and Replicability

Reductions were primarily driven by highly replicable design-based decisions and further material optimizations were cost neutral. Innovative strategies include a cost per carbon method, timber mullions, a matrix of structural systems, and the use of Dowel Laminated Timber (DLT) with acoustic treatment instead of CLT.

#### Low Carbon Strategies

In order to achieve a 34% reduction, six of the common low carbon strategies were incorporated. Additionally, they had a number of unique strategies, which set this project apart, such as: · Creating a "cost per carbon reduction method" model in order to make informed decisions that were cost effective and low

#### carbon

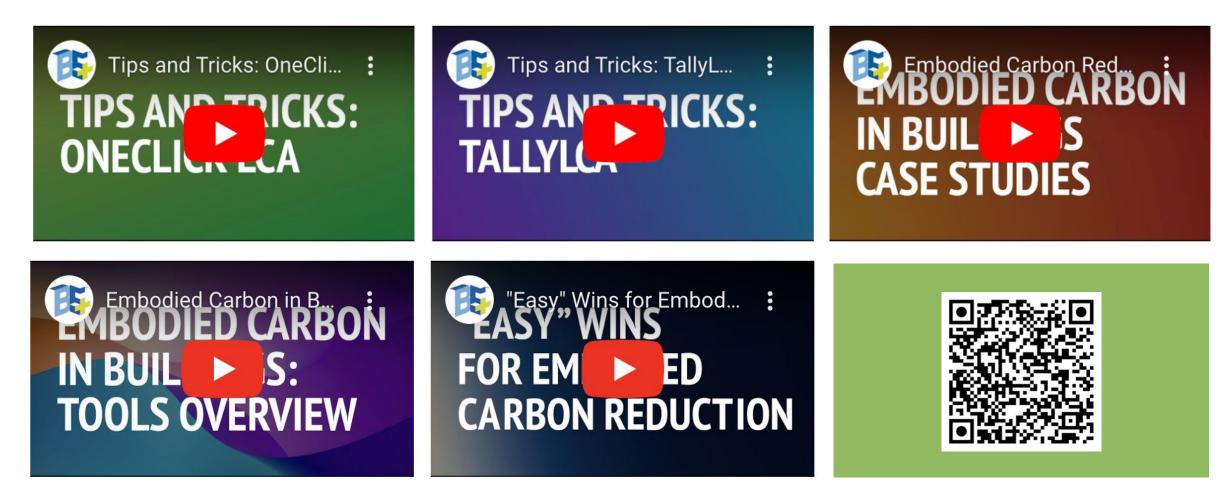
## **FOR MORE INFO:**

CHECK OUT THE FULL CASE STUDIES DOCUMENT



# People Impact

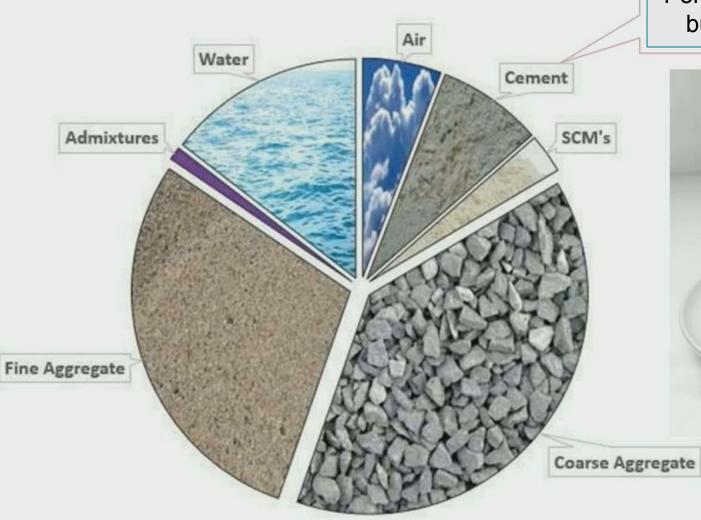



**Before the Challenge to After Change** Familiarity with Embodied Carbon: 2x Familiarity with WBCLA: 3x Likely to implement in future: 100% "The Challenge **jump started our firm's work** around embodied carbon by providing the training and tools to make meaningful carbon reductions and conduct our first Whole Building Life Cycle Analysis.

We've since **integrated embodied carbon reduction into our everyday workflow**, building upon the success of our pilot project.

We could not have made such rapid gains in understanding and practice of embodied carbon reduction without the resources and programming of the Challenge." challenge participant

# **Policy Influence**


## **EDUCATION**



1200+ views Event & Training recordings available online for **FREE** 

# **Questions?**

## **Concrete Mix Ingredients**



Portland Cement is only 5-15% by mass but is **80-90% of embodied carbon** 



Mike Gryniuk, Principal, CORA Structural



## **Cake Mix Specifications**

 Sets limits on the amounts of ingredients based on past experience.

- Prescriptive Example:
  - a. The ratio of milk to eggs cannot exceed 0.45.
  - b. The minimum amount of flour in the cake shall be ½ lb for every 10 cups of cake mix.
  - For every cup of almond flour used in lieu of all-purpose flour add one egg.

### Prescriptive





# **Cake Mix Specifications**

### Performance-Based

- Specifies concrete requirements for the application and conducts tests to verify compliance.
- No pre-required ratios or amounts of ingredients.

#### • Performance Example:

- a. The cake shall be ready to serve in 2 days.
- b. The cake shall have less calories than a typical cake.
- c. The cake shall withstand the drive to auntie's house.





### How to Get Lower Emission Concrete

- 1. Find Ready-Mix partner **EXPERIENCED** in:
  - Environmental Product Declarations (EPDs)
  - Supplying better than Eastern benchmark




MA Ready-Mix Concrete Plants with EPD Capability via MassCEC grant

2. Set performance based specification **EARLY** and engage ready-mix partner **EARLY** 



3. Early kick-off meeting

# How to Specify Lower Emission Concrete Fireside Chat



#### **Caroline Murray**

**Turner Construction Co.** Regional Sustainability Manager

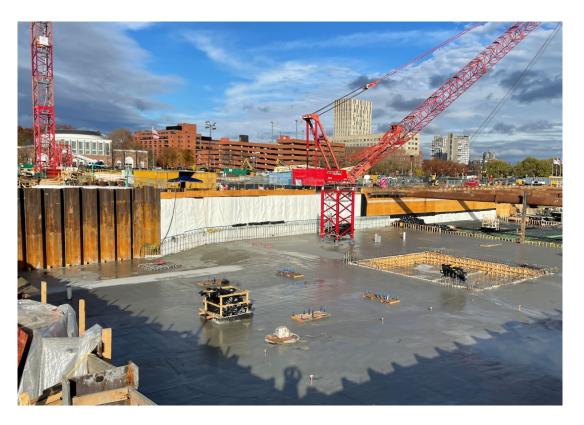




#### Jim Carreira

**Boston Sand & Gravel** Technical Director



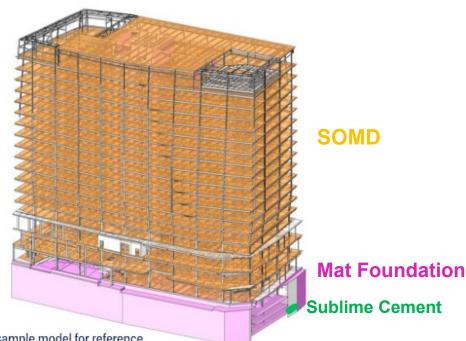

### What is Lower Emission Concrete?

The National Ready Mix & Concrete Association (NRMCA) publishes average greenhouse gas impact in the **Eastern Regional Benchmark** 

Lower Emission Concrete **beats** the regional benchmark

Eastern Regional Benchmark is moving target

We aimed for **25% reduction** from the Eastern Regional Benchmark v3 and succeeded in achieving a **49% reduction** 



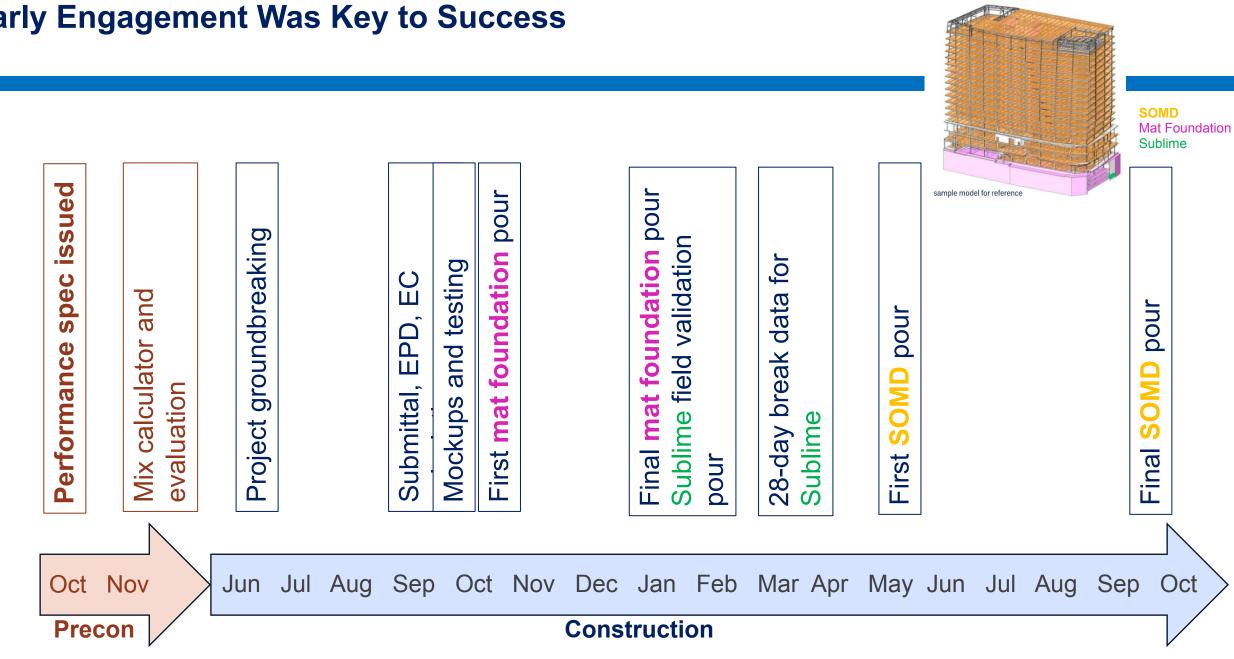

It wasn't that hard!

### **Precon: Evaluate The Concrete Mix Volumes**



| Description<br>4000 3/8 LW NA MRWR<br>4000 3/4 MRWR<br>4000 3/8 HRWR<br>4000 3/8 NA HRWR<br>5000 3/8 NA HRWR<br>5000 3/4 HRWR+ 3 Gal CNI<br>5000 3/4 HRWR+ 3 Gal CNI | Locations/Uses<br>Equipment Pads (Interior)<br>Construction Hoist Pad, etc.<br>Ductbanks<br>Pan Stairs<br>Column Encasements<br>SOG<br>Foundation Walls, Kneewalls | Mix Design<br>624164<br>324064<br>234074<br>234174<br>235054<br>335054<br>335074 | <b>Qty (cy)</b><br>557<br>96<br>62<br>38<br>116<br>1,587<br>1,385 | NRMCA<br>Baseline V3<br>kg CO2e/cy<br>464.2<br>266.7<br>266.7<br>266.7<br>266.7<br>321.4<br>321.4<br>321 | Specified<br>kg CO2e/cy<br>335<br>196<br>196<br>196<br>196<br>237<br>237 | Final<br>kg CO2e/cy<br>319<br>168<br>202<br>199<br>258<br>217<br>217 | % EC<br>Reduction<br>over<br>baseline<br>31%<br>37%<br>24%<br>25%<br>20%<br>32%<br>32%<br>32% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 5000 3/4 NA HRWR<br>6000 3/4 HRWR+ 3 Gal CNI                                                                                                                         | Interior<br>Water Tank Lid                                                                                                                                         | 335174<br>336054                                                                 | 1,103<br>49                                                       | 321<br>339.5                                                                                             | 237<br>250                                                               | 206<br>244                                                           | 36%<br>28%                                                                                    |
| 6000 3/4 NA HRWR                                                                                                                                                     | Social Stairs                                                                                                                                                      | 336184                                                                           | 27                                                                | 339.5                                                                                                    | 250                                                                      | 214                                                                  | 37%                                                                                           |
| All as above                                                                                                                                                         | All as above                                                                                                                                                       | Various                                                                          | 5,017                                                             | 335                                                                                                      | 2 <mark>4</mark> 6                                                       | 226                                                                  | 33%                                                                                           |
| 4000 3/4 NA MRWR                                                                                                                                                     | SOMD Level 2 - Roof                                                                                                                                                | хххх64                                                                           | 11,185                                                            | 266.7                                                                                                    | 196                                                                      | 179                                                                  | 33%                                                                                           |
| 8000 3/4" NA HRWR (low heat)                                                                                                                                         | Mat Foundation                                                                                                                                                     | xxxx76                                                                           | 11,553                                                            | 401.4                                                                                                    | 297                                                                      | 164                                                                  | 59%                                                                                           |




### **Precon: Set The Goal and Raise the Bar**

## Achieved 49% reduction vs eastern regional benchmark NRMCA v3

#### Spec target was 25% reduction in Concrete

| Description                  | Locations/Uses               | Mix Design | Qty (cy) | NRMCA<br>Baseline V3<br>kg CO2e/cy | Specified<br>kg CO2e/cy | Final<br>kg CO2e/cy | % EC<br>Reduction<br>over<br>baseline |
|------------------------------|------------------------------|------------|----------|------------------------------------|-------------------------|---------------------|---------------------------------------|
| 4000 3/8 LW NA MRWR          | Equipment Pads (Interior)    | 624164     | 557      | 464.2                              | 335                     | 319                 | 31%                                   |
| 4000 3/4 MRWR                | Construction Hoist Pad, etc. | 324064     | 96       | 266.7                              | 196                     | 168                 | 37%                                   |
| 4000 3/8 HRWR                | Ductbanks                    | 234074     | 62       | 266.7                              | 196                     | 202                 | 24%                                   |
| 4000 3/8 NA HRWR             | Pan Stairs                   | 234174     | 38       | 266.7                              | 196                     | 199                 | 25%                                   |
| 5000 3/8 HRWR+ 3 Gal CNI     | Column Encasements           | 235054     | 116      | 321.4                              | 196                     | 258                 | 20%                                   |
| 5000 3/4 HRWR+ 3 Gal CNI     | SOG                          | 335054     | 1,587    | 321.4                              | 237                     | 217                 | 32%                                   |
| 5000 3/4 HRWR                | Foundation Walls, Kneewalls  | 335074     | 1,385    | 321                                | 237                     | 217                 | 32%                                   |
| 5000 3/4 NA HRWR             | Interior                     | 335174     | 1,103    | 321                                | 237                     | 206                 | 36%                                   |
| 6000 3/4 HRWR+ 3 Gal CNI     | Water Tank Lid               | 336054     | 49       | 339.5                              | 250                     | 244                 | 28%                                   |
| 6000 3/4 NA HRWR             | Social Stairs                | 336184     | 24       | 0.00.0                             | 200                     | 214                 | 37%                                   |
| All as above                 | All as above                 | Various    | 5,017    | 335                                | 246                     | 226                 | 33 <mark>%</mark>                     |
| 4000 3/4 NA MRWR             | SOMD Level 2 - Roof          | хххх64     | 11,185   | 266.7                              | 196                     | 179                 | 33%                                   |
| 8000 3/4" NA HRWR (low heat) | Mat Foundation               | xxxx76     | 11,553   | 401.4                              | 297                     | 164                 | 59%                                   |





### **Early Engagement Was Key to Success**

| Description                       | Locations/Uses               | Producer's<br>Mix Design<br># | Qty (cy) | Specified<br>kg<br>CO2e/cy | NRMCA<br>Baseline<br>V3 kg<br>CO2e/cy | Final kg<br>CO2e/cy | % EC<br>Reduction<br>over<br>baseline<br>for this<br>mix design | savings<br>over<br>baseline |
|-----------------------------------|------------------------------|-------------------------------|----------|----------------------------|---------------------------------------|---------------------|-----------------------------------------------------------------|-----------------------------|
| 4000 3/8 LW NA MRWR+1.5 lb/cy fil | Equipment Pads (Interior)    | 624164                        | 557      | 335                        | 464.2                                 | 319                 | 31%                                                             | 80876                       |
| 4000 3/4 MRWR                     | Construction Hoist Pad, etc. | 324064                        | 96       | 196                        | 266.7                                 | 168                 | 37%                                                             | 9475                        |
| 4000 3/8 HRWR                     | Ductbanks                    | 234074                        | 62       | 196                        | 266.7                                 | 202                 | 24%                                                             | 4011                        |
| 4000 3/8 NA HRWR                  | Pan Stairs                   | 234174                        | 38       | 196                        | 266.7                                 | 199                 | 25%                                                             | 2573                        |
| 5000 3/8 HRWR+ 3 Gal CNI          | Column Encasements           | 235054                        | 116      | 196                        | 321.4                                 | 258                 | 20%                                                             | 7354                        |
| 5000 3/4 HRWR+ 3 Gal CNI          | SOG                          | 335054                        | 1,587    | 237                        | 321.4                                 | 217                 | 32%                                                             | 165683                      |
| 5000 3/4 HRWR                     | Foundation Walls, Kneewalls  | 335074                        | 1,385    | 237                        | 321                                   | 217                 | 32%                                                             | 144040                      |
| 5000 3/4 NA HRWR                  | Interior                     | 335174                        | 1,103    | 237                        | 321                                   | 206                 | 36%                                                             | 126845                      |
| 6000 3/4 HRWR+ 3 Gal CNI          | Water Tank Lid               | 336054                        | 49       | 250                        | 339.5                                 | 244                 | 28%                                                             | 4680                        |
| 6000 3/4 NA HRWR                  | Social Stairs                | 336184                        | 24       | 250                        | 339.5                                 | 214                 | 37%                                                             | 3012                        |
| All as above                      | All as above                 | Various                       | 5,017    | 246                        | 335                                   | 226                 | 33%                                                             | Above                       |
| 4000 3/4 NA MRWR                  | SOMD Level 2 - Roof          | ххххб4                        | 11,185   | 196                        | 266.7                                 | 179                 | 33%                                                             | 980,925                     |
| 8000 3/4" NA HRWR (low heat)      | Mat Foundation               | xxxx76                        | 11,553   | 297                        | 401.4                                 | 164                 | 59%                                                             | 2,742,682                   |



4,272 metric tons CO2e = 996 gasoline-powered passenger vehicles driven for one year!

|   | 2,742,682 |             |
|---|-----------|-------------|
| 8 | 4,272,156 | 4,272       |
|   | TOTAL     | TOTAL       |
|   | KG        | METRIC TONS |



## **EMBODIED CARBON** REDUCTION CHALLENGE

THE CHALLENGE: REDUCE UPFRONT CARBON OF BUILDINGS

### **LEARN 7 STRATEGIES REPLAY**

### SEE 16 CASE STUDIES

