# **BUILDINGENERGY BOSTON**

#### In the Last Analysis: An Electrified Town Garage for the 21st Century

Andrew Shapiro, Energy Balance

**Curated by Fred Davis** 

Northeast Sustainable Energy Association (NESEA) | March 20, 2025

#### The Team

William Lamphere Architects

David Roy and John LaMothe





Engineering Services of Vermont, uc Dan Dupras and Patrick Perault



James Hoepker and Kevin Worden

Associates Commissioning

Mike LaCrosse and Walker Calderwood

#### Energy Balance, Inc. Andy Shapiro

What we will do today

- The building
- Options studied
- Energy analysis embodied and operational
- Construction costs
- Life cycle cost analysis
- Selected systems
- Design phase commissioning
- Lessons learned

#### Learning objectives

- Compare heating COP of
  - ground source open loop
  - ground source closed loop
  - air-to-water heat pumps
- Understand a simplified method to estimate closed loop ground source heat pump heating system over the course of a winter
- Understand the role of peak electrical demand in an all-electric building on system design and on operating cost
- Understand the multiple roles that radiant heat can play in a road maintenance garage







North elevation

#### Floorplan



- Sections · R-5 R-3
- R-50 PI roof
  - R-35 -- 4" rigid foil faced PI continuous +5.5" wood fiber batts
  - R-20+ Glavel + foam under slab
  - R-10 Thermal break at edges of slab
  - R-5 Tripane FG windows
  - R-15 3" foam overhead doors
  - 0.05 cfm50/sq.f.t shell





#### Options studied

#### **Building enclosure**

- Code metal
- high efficiency wood enclosure



### Options studied

Mechanical systems

- Propane boiler
- Wood pellet boiler
- Air to water heat pump -(A2WHP)
- Ground source heat pump (GSHP)



All options with radiant floor

#### • Better melting/warming of trucks

- Heats incoming fresh air
- Large thermal flywheel

Baseline wood pellets

Baseline, Propane

High Performance, Wood pellets

High Performance, Propane

High Performance, Air to Water Heat Pump

High Performance, Ground Source Heat Pump

High Performance, Air to Water Heat Pump with PV

High Performance, Ground Source Heat Pump with PV

Baseline = metal building; High Performance = efficient wood building

Also looked at demand control for heat pump systems

Options studied

#### Demand controlled ventilation

- RH
- CO
- NO<sub>2</sub>
- Manual
  Air heated
  by passing
  over radiant
  floor!





# *Peak electrical demand reduction – the dirty secret of electrification!*

- Control EV chargers!
- Control heat pumps (?)
- 25,000 gallons of fire protection tanks for thermal



30F drop in tank temperature = 24 hrs of heat at -20F outside

storage

#### Analysis

- Embodied emissions
- Operational energy
- operational emissions
- construction costs
- operating expense
- 30 yr life cycle cost analysis

|       | EM Town Garage                                       | Assumptions for Energy Modeling                                                | 240624                                                                             |  |  |  |
|-------|------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
|       | Building                                             | Metal Building, per 2024 CBECS code                                            | Efficient Wood Building                                                            |  |  |  |
|       | Windows                                              | R-3.5                                                                          | R-3.5                                                                              |  |  |  |
|       | Skylights                                            | none w/ 0.5 wsf lights                                                         | none w/ 0.5 wsf lights                                                             |  |  |  |
|       | Doors                                                | R-2.7                                                                          | R-2.7                                                                              |  |  |  |
| elope | Air/Vapor Barrier                                    | Inner VB is inner skin of metal building panels                                | Full VB interior of walls, full VB on roof top, wall VE fully connected to roof VB |  |  |  |
| Enve  | Insulation Roof R-42, 6" foam insulated steel panels |                                                                                | R-60 / U=.0167                                                                     |  |  |  |
|       | Insulation Walls                                     | R-25, 4" foam insulated steel panels                                           | R-30                                                                               |  |  |  |
|       | Stem Wall                                            | R-10 continuous rigid exterior                                                 | R-20 continuous rigid exterior insulation                                          |  |  |  |
|       | Slab under                                           | f-0.434 by code, but modeled at 0.71 for 2" under 48"                          | 4" EPS under whole slab, R-18; f-0.2                                               |  |  |  |
|       | Slab edge                                            | none                                                                           | 4" exterior of stem wall, up 4 ft and down 4'                                      |  |  |  |
|       | <b>Overhead doors</b>                                | R-6 no requirement                                                             | R-18                                                                               |  |  |  |
|       | Air Leakage rate                                     | 0.25 cfm75/sf. Shell 6 sides, equivalent to 0.19<br>cfm50/sq.ft. shell 6 sides | 0.06 cfm50/sq.ft. shell 6 sides                                                    |  |  |  |
|       | Envelope<br>Commissioning                            | yes                                                                            | yes                                                                                |  |  |  |

|      | EM Town Garage |                                                                  |                                                                                                               |
|------|----------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|      |                | Metal Building, per 2024 CBECS code                              | Efficient Wood Building                                                                                       |
|      | Ventilation    | Two exhaust fans, controlled on CO, NO2, RH and                  | Two exhaust fans, controlled on CO, NO2, RH and                                                               |
|      | Domestic Hot   | Tank off boiler, full recirc                                     | HPWH, EF =3.0, controlled circulation                                                                         |
|      | Controls       | programmable thermostat                                          | programmable thermostat                                                                                       |
| Mech | Heating        | Propane or wood pellet boiler boiler, eff = 0.80, AFUE<br>= 0.82 | A2WHP COP 2.3; or GSHP COP 4.0; or propane or<br>wood pellet boiler Eff=0.80 (HP COPs modeled<br>dynamically) |
|      | Cooling        | office only, ASHP                                                | office only, ASHP                                                                                             |
|      | Lighting       | LED                                                              | LED                                                                                                           |
|      | Plug Loads     | Low                                                              | Low                                                                                                           |





#### Operating Energy and Cost Analysis Process

- 1. Takeoffs from building design
- 2. Inputs into Energy 10 to generate hourly loads (hourly simulation model)
- 3. Run model to output hourly loads for heat, hot water, lights, and other (no cooling in garage) and hourly outside temperature
- 4. Develop efficiency curve/equation for air to water heat pump (A2WHP) and for ground source heat pump (GSHP)
- 5. Apply heating efficiency equation to each hour's heating load

Wait – there's more!

### Operating Energy and Cost Analysis Process

- 1. Takeoffs from building design
- Inputs into Energy 10 to generate hourly loads (hourly simulation model)
- 3. Run model to output hourly loads for heat, hot water, lights, and other (no cooling in garage) and hourly outside temperature
- 4. Develop efficiency curve/equation for air to water heat pump (A2WHP) and for ground source heat pump (GSHP)
- 5. Apply heating efficiency equation to each hour's heating load
- 6. Tally annual energy use by end use
- 7. Tally peak demand by month for whole building
- 8. For boilers, much simpler: apply efficiency of equipment (85%) to annual heating and hot water usage
- 9. Apply utility rate structure to monthly energy and peak demands
- 10. Apply emissions per unit energy to annual energy use

#### Hourly energy/load model output (8760 hours)

Heating "<u>load</u>" is how much energy is required to keep building warm Heating "<u>energy</u>" is how much electricity or fuel is required to supply that energy

For a heating <u>load</u> of 600 MMBtu/yr, with a heat pump with COP of 3, the <u>energy</u> required would be 200 MMBtu/yr of electricity. With a boiler with 80% efficiency, the <u>energy</u> required would be 750 MMBtu/year of propane

| Outside  |           |         |         |          |          |       | Heating |
|----------|-----------|---------|---------|----------|----------|-------|---------|
| temp, F  | Hour of   |         | Bldg    | DHW      | Lighting | Plug  | Load    |
| dry bulb | the Year  |         | kWh     | kWh      | kWh      | kWh   | kWh     |
|          | High perf | ormance |         | at COP=2 |          |       |         |
|          | Total kWh |         | 168,914 | 5,116    | 3,154    | 5,620 | 149,898 |
|          | Max       | Max>>   | 68      | 1.0      | 0.6      | 1.0   | 64      |
|          |           |         |         |          |          |       |         |
| 34       | 1         |         | 32.8    | 0.29     | 0.09     | 0.38  | 32      |
| 33       | 2         |         | 30.3    | 0.29     | 0.09     | 0.38  | 29      |
| 35       | 3         |         | 29.3    | 0.29     | 0.09     | 0.38  | 28      |
| 34       | 4         |         | 28.9    | 0.29     | 0.09     | 0.38  | 28      |
| 29       | 5         |         | 31.2    | 0.29     | 0.09     | 0.38  | 30      |
| 27       | 6         |         | 33.5    | 0.29     | 0.09     | 0.38  | 32      |
| 26       | 7         |         | 34.7    | 0.29     | 0.08     | 0.38  | 34      |
| 26       | 8         |         | 35.1    | 0.29     | 0.08     | 0.48  | 34      |
| 25       | 9         |         | 34.8    | 0.38     | 0.08     | 0.48  | 33      |
| 25       | 10        |         | 33.4    | 0.38     | 0.08     | 0.48  | 32      |
| 25       | 11        |         | 33.3    | 0.38     | 0.08     | 0.48  | 32      |
| 27       | 12        |         | 31.5    | 0.38     | 0.08     | 0.48  | 30      |
| 26       | 13        |         | 30.4    | 0.38     | 0.08     | 0.48  | 29      |
| 25       | 14        |         | 31.6    | 0.38     | 0.08     | 0.48  | 30      |

#### Efficiency curves/equations Ground Source Heat Pump



Looking at this, why is an open loop system more efficient than closed loop?

#### 060 - Performance Data cont.

#### **Heating Capacity**

| So        | urce        | Load Flow-9 GPM |           |                      |             |             | n 3  | Load Flow-13.5 GPM |         |             |             |             | Load Flow-18 GPM                         |           |           |                        |             |             |      |           |
|-----------|-------------|-----------------|-----------|----------------------|-------------|-------------|------|--------------------|---------|-------------|-------------|-------------|------------------------------------------|-----------|-----------|------------------------|-------------|-------------|------|-----------|
| EST<br>°F | Flow<br>GPM | ELT<br>°F       | LLT<br>°F | HC<br>MBTUH          | Power<br>kW | HE<br>MBTUH | COP  | LST<br>*F          | °F      | HC<br>MBTUH | Power<br>kW | HE<br>MBTUH | COP                                      | LST<br>°F | LLT<br>°F | HC<br>MBTUH            | Power<br>kW | HE<br>MBTUH | COP  | LST<br>°F |
|           |             | 60              |           | Alter and the second | 10-10       |             |      | 11                 |         |             |             |             |                                          |           |           | distance of the second |             |             | · ·  | 11000     |
|           |             | 80              | 1         |                      |             |             |      |                    |         | 0.4100.00   | passas      |             | a an |           |           |                        |             |             |      |           |
|           | 15.5        | 100             | 1         |                      |             |             |      |                    |         | Opera       | tion not    | recomme     | nded                                     |           |           |                        |             |             |      |           |
| 20        |             | 120             | 1         |                      |             |             |      |                    |         |             |             |             |                                          |           |           |                        |             |             |      |           |
| 25        |             | 60              | 71,1      | 48.3                 | 2,93        | 38.3        | 4.83 | 20.6               | 67,4    | 48.6        | 2.86        | 38.8        | 4.98                                     | 20.6      | 65.6      | 48.9                   | 2.79        | 39.4        | 5.14 | 20.5      |
|           | 100         | 80              | 90.8      | 47.3                 | 3.93        | 33.9        | 3.53 | 21.1               | 87.3    | 47.6        | 3.85        | 34.4        | 3.62                                     | 21.1      | 85.5      | 47.8                   | 3.76        | 35.0        | 3.72 | 21.0      |
|           | 18          | 100             | TIO.6     | 46.3                 | 4.93        | 29.5        | 2.75 | 21.6               | 107.1   | 46.5        | 4.83        | 30.0        | 2.82                                     | 21.6      | 105.4     | 46.8                   | 4.74        | 30.6        | 2.89 | 21.5      |
|           |             | 120             | 130.4     | 45.3                 | 5.93        | 25.1        | 2.24 | 22.1               | 126.9   | 45.5        | 5.82        | 25.6        | 2.29                                     | 22.1      | 125.2     | 45.7                   | 5.71        | 26.2        | 2.35 | 22.0      |
|           |             | 60              | 71.5      | 50.1                 | 2.94        | 40.1        | 4,99 | 20.B               | 68.7    | 50.5        | 2.87        | 40,7        | 5,17                                     | 20.7      | 65.8      | 50.9                   | 2,79        | 41.4        | 5.35 | 20.5      |
|           | ~           | 80              | 91.3      | 49.3                 | 3.95        | 35.9        | 3.66 | 21.8               | 88.5    | 49.7        | 3.86        | 36.5        | 3.77                                     | 21.6      | 85.7      | 50.0                   | 3.77        | 37.1        | 3.89 | 21.5      |
|           | 2           | 100             | 111.1     | 48.6                 | 4.95        | 31.7        | 2.87 | 22.7               | 108.4   | 48.8        | 4.85        | 32.3        | 2.95                                     | 22.6      | 105.6     | 49.0                   | 4.74        | 32.8        | 3.03 | 22.5      |
|           |             | 120             | 131.0     | 47.B                 | 5.96        | 27.5        | 2.35 | 23.7               | 128.2   | 48.0        | 5.84        | 28.0        | 2.41                                     | 23.6      | 125.5     | 48.1                   | 5.72        | 28.6        | 2.46 | 23.5      |
|           |             | 60              | 71.9      | 52.1                 | 3.0         | 42.0        | 5.17 | 22.9               | 68.9    | 51.8        | 2.87        | 42.0        | 5,29                                     | 22.9      | 65,9      | 51.6                   | 2.8         | 42.0        | 5.41 | 22.8      |
|           |             | 80              | 91.7      | 50.9                 | 4.0         | 37.4        | 3.77 | 23.7               | 88.7    | 50.8        | 3.86        | 37.6        | 3.86                                     | 23.6      | 85.8      | 50.7                   | 3.8         | 37.8        | 3.95 | 23.5      |
| 50        | 13.5        | 100             | 111.4     | 49.7                 | 5.0         | 32.8        | 2.94 | 24.4               | 108.6   | 49.8        | 4.84        | 33.2        | 3.01                                     | 24.3      | 105.7     | 49.8                   | 4,7         | 33.7        | 3.08 | 24.3      |
|           |             | 120             | 131.1     | 48.6                 | 6.0         | 28.2        | 2.39 | 25.2               | 128.4   | 48.8        | 6.07        | 28.0        | 0.45                                     | 26.1      | 125.6     | 49.0                   | 5.7         | 29.5        | 2.51 | 25.0      |
|           |             | 60              | 72.4      | 54.1                 | 2.97        | 44.0        | 574  | 25.0               | 69.2    | 53.2        | 2.88        | 43.3        | 5.41                                     | 25.0      | 66.0      | 52.2                   | 2.79        | 42.7        | 5.48 | 25.1      |
|           | 18          | 80              | 92.0      | 52.5                 | 3.00        | 39.0        | 3.88 | 25.5               | 89.0    | 52.0        | 3.86        | 38.8        | 3.95                                     | 25.6      | 85.9      | 51.4                   | 3.76        | 38.6        | 4.0  | 25.6      |
|           |             | 100             | 111.7     | 50.5                 | 4.96        | 34.0        | 3.01 | 26.1               | 108.7   | 50.8        | 4.84        | 34.2        | 3.07                                     | 26.1      | 105.8     | 50.6                   | 4.72        | 34.5        | 3.14 | 26.1      |
| _         |             | 120             | 174.5     | 49.3                 | 5,95        | 29.0        | 2.43 | 26.7               | 128.5   | 49.6        | 5.82        | 29.7        | 2.50                                     | 26.6      | 125.7     | 49.8                   | 5.69        | 30.4        | 2.56 | 26.5      |
|           | -           | 60              | 75.1      | 66.0                 | 3.0         | \$5.7       | 6.34 | 37.2               | 71.4    | 66.2        | 2.92        | 56.2        | 6.62                                     | 37.1      | 67.6      | 66.3                   | 2.8         | 56,7        | 6.90 | 37.0      |
|           |             | 80              | 94.6      | 63.9                 | 4.0         | 50.2        | 4.66 | 38.5               | 91.0    | 64.1        | 3.89        | 50.8        | 4.83                                     | 38.4      | 87.4      | 64.3                   | 3.8         | 51.4        | 4.99 | 38.2      |
|           |             | 100             | 114.1     | 61.7                 | 5.0         | 44.7        | 3.63 | 39.8               | 110.6   | 62.0        | 4.86        | 45.4        | 3.74                                     | 39.6      | 107.1     | 62.3                   | 4.7         | 46.1        | 3.86 | 39,4      |
|           |             | 120             | 133.7     | 59.6                 | 6.0         | 39,3        | 2.93 | 41.0               | 130.3   | 60.0        | 5.83        | 40.1        | 3.02                                     | 40.8      | 126.9     | 60.3                   | 5.7         | 40.9        | 3.11 | 40.6      |
|           |             | 60              | 75.8      | 68.8                 | 3.1         | 58.4        | 6.61 | 40.1               | 71.8    | 68.5        | 2.93        | 58.5        | 6.84                                     | -40.1     | 67.8      | 68.2                   | 2.8         | 58.5        | 7.09 | 40.0      |
|           | -           | 80              | 95.2      | 66.2                 | 4.0         | 52.5        | 4.81 | 41.1               | 91.4    | 66.1        | 3.90        | 52.8        | 4.96                                     | 41.0      | 87.6      | 66.1                   | 3.8         | 53.2        | 5.13 | 41.0      |
| 50        | 13.5        | 100             | 184.6     | 63.7                 | 5.0         | 46.6        | 3.72 | 42.1               | . 111.0 | 63.8        | 4.87        | 47.2        | 3.84                                     | 42.0      | 107.3     | 64.0                   | 4.7         | 47.8        | 3.96 | 41.9      |
|           |             | 120             | 134.0     | 61.1                 | 6.0         | 40.6        | 2.98 | 43.1               | 130.5   | 61.5        | 5.85        | 41.5        | 3.08                                     | 42.9      | 127.1     | 61.9                   | 5.7         | 42.4        | 3.18 | 42.8      |
|           |             | 60              | 76.4      | 71.6                 | 3.1         | 61.1        | 6.79 | 43.0               | 72.2    | 70.8        | 2.95        | 60.7        | 7.01                                     | 43.0      | 68.0      | 70.0                   | 2.8         | 60.4        | 7.24 | 43,1      |
|           | 10          | 80              | 95.7      | 68.6                 | 4,1         | 54.7        | 4.93 | 43.7               | 91.7    | 68.2        | 3.92        | 54.8        | 5.09                                     | 43.7      | 87.8      | 67.8                   | 3.8         | 54.9        | 5.25 | 43.7      |
|           | 10          | 100             | 115.0     | 65.6                 | 5.1         | 48.4        | 3.79 | 44.5               | 111.3   | 65.6        | 4.89        | 48.9        | 3.92                                     | 44.4      | 107.5     | 65.6                   | 4.7         | 49.4        | 4.06 | 44.3      |
|           |             | 120             | 134,3     | 62.6                 | 6.0         | 42.0        | 3.03 | 45.2               | 130.8   | 63.0        | 5.87        | 43.0        | 3.15                                     | 45.1      | 127.3     | 63.4                   | 5.7         | 44.0        | 3.26 | 45.0      |
|           |             | 60              | 78.8      | 81.9                 | 3.12        | 71.3        | 7.69 | \$3.7              | 74.1    | 81.8        | 2.98        | 71.6        | 8.07                                     | 53.6      | 69.4      | 81.7                   | 2.83        | 72.0        | 8.46 | 53.5      |
|           |             | 80              | 98.0      | 78,4                 | 4.06        | 015         | 5.65 | 55.2               | 93.5    | 78.5        | 3.92        | 65.1        | 5.88                                     | 55.1      | 89.0      | 78.6                   | 3.78        | 65.7        | 0.10 | 54.9      |
|           | 9           | 100             | 117.2     | 74.9                 | 5.01        | 57.8        | 4.38 | 55.0               | 112.0   | 75.2        | 4.87        | 58.6        | 4.54                                     | 56.6      | 108.7     | 75.0                   | 4.72        | 59.4        | 4.69 | 56.4      |
|           |             | 120             | 136.4     | 71.4                 | 5.95        | 51.1        | 3.52 | 58.3               | 132.3   | 72.0        | 5.81        | 52.1        | 3.63                                     | 58.1      | 128.3     | 72.5                   | 5.67        | 53.1        | 3.75 | 57.8      |

<u>THIS</u> <u>TABLE IS</u> <u>NOT TO</u> <u>BE READ!</u>

#### Selected system: Ground Source Heat Pump System

Closed loop, boreholes



Open loop, "pump and dump"



#### Efficiency curves/equations Ground Source Heat Pump



Looking at this, why is an open loop system more efficient than closed loop?

#### Efficiency curves/equations Ground Source Heat Pump





Looking at this, why is an open loop system (more efficient than closed loop borehole)?

#### Efficiency curves/equations Air-to-Water Heat Pump



#### Apply heating efficiency equation to each hour's heating load And graph total building energy usage by hour



#### Energy and peak demand by month for whole building

| Month | A2W HP     | GSHP     | A2W HP  | GSHP    |  |
|-------|------------|----------|---------|---------|--|
|       | Building k | Wh/month | kW peal | k/month |  |
| 1     | 13,000     | 8,000    | 35      | 19      |  |
| 2     | 13,000     | 8,000    | 35      | 19      |  |
| 3     | 10,000     | 7,000    | 35      | 19      |  |
| 4     | 5,000      | 4,000    | 17      | 11      |  |
| 5     | 2,000      | 2,000    | 11      | 8       |  |
| 6     | 2,000      | 2,000    | 9       | 7       |  |
| 7     | 1,000      | 1,000    | 6       | 4       |  |
| 8     | 1,000      | 1,000    | 8       | 6       |  |
| 9     | 2,000      | 2,000    | 13      | 9       |  |
| 10    | 4,000      | 3,000    | 14      | 10      |  |
| 11    | 8,000      | 6,000    | 21      | 13      |  |
| 12    | 11,000     | 8,000    | 32      | 17      |  |
|       | 72,000     | 52,000   |         |         |  |

#### Operational energy 1<sup>st</sup> year

|   | Option                              | Energy Use [4] |          |  |  |  |
|---|-------------------------------------|----------------|----------|--|--|--|
| # | Name [2]                            | Electricity    | Propane  |  |  |  |
|   |                                     | kWh/year       | Gal/year |  |  |  |
| 1 | Prefab Metal, Propane Boiler        | 12,000         | 10,000   |  |  |  |
| 2 | Wood Frame, Propane Boiler          | 11,000         | 7,000    |  |  |  |
| 3 | Wood Frame, Air-to-Water Heat Pump  | 71,000         | _        |  |  |  |
| 4 | Wood Frame, Ground Source Heat Pump | 54,000         | -        |  |  |  |



Operational energy -- Uncertainty in Modeling

- EV chargers (not included in building analysis)
- Future equipment chargers
- Open 10X14 overhead doors
- Cold, iced trucks
- Infiltration rate over time

#### Energy cost by month for whole building

|       |            |          |         |         | No Demand Limit, no<br>resistance heating |        |        | r     | Demand limited, no resistance heating, at |        |           |       |  |
|-------|------------|----------|---------|---------|-------------------------------------------|--------|--------|-------|-------------------------------------------|--------|-----------|-------|--|
| Month | A2W HP     | GSHP     | A2W HP  | GSHP    |                                           | A2W HP |        | GSHP  | A2W HP                                    |        |           | GSHP  |  |
|       | Building k | Wh/month | kW peal | «/month |                                           | Cost/n | nont   | th    |                                           | Cost/r | ost/month |       |  |
| 1     | 13,000     | 8,000    | 35      | 19      | \$                                        | 2,600  | \$     | 1,500 | \$                                        | 2,600  | \$        | 1,500 |  |
| 2     | 13,000     | 8,000    | 35      | 19      | \$                                        | 2,600  | \$     | 1,500 | \$                                        | 2,600  | \$        | 1,500 |  |
| 3     | 10,000     | 7,000    | 35      | 19      | \$                                        | 2,200  | \$     | 1,400 | \$                                        | 2,200  | \$        | 1,400 |  |
| 4     | 5,000      | 4,000    | 17      | 11      | \$                                        | 1,500  | \$     | 1,000 | \$                                        | 1,100  | \$        | 800   |  |
| 5     | 2,000      | 2,000    | 11      | 8       | \$                                        | 1,100  | \$     | 700   | \$                                        | 700    | \$        | 500   |  |
| 6     | 2,000      | 2,000    | 9       | 7       | \$                                        | 1,100  | \$     | 700   | \$                                        | 700    | \$        | 500   |  |
| 7     | 1,000      | 1,000    | 6       | 4       | \$                                        | 900    | \$     | 600   | \$                                        | 500    | \$        | 400   |  |
| 8     | 1,000      | 1,000    | 8       | 6       | \$                                        | 900    | \$     | 600   | \$                                        | 500    | \$        | 400   |  |
| 9     | 2,000      | 2,000    | 13      | 9       | \$                                        | 1,100  | \$     | 700   | \$                                        | 700    | \$        | 500   |  |
| 10    | 4,000      | 3,000    | 14      | 10      | \$                                        | 1,300  | \$     | 800   | \$                                        | 1,000  | \$        | 700   |  |
| 11    | 8,000      | 6,000    | 21      | 13      | \$                                        | 1,900  | \$     | 1,300 | \$                                        | 1,600  | \$        | 1,100 |  |
| 12    | 11,000     | 8,000    | 32      | 17      | \$ 2,300 \$ 1,500                         |        | \$     | 2,300 | \$                                        | 1,500  |           |       |  |
|       | 72,000     | 52,000   |         |         | \$ 19,500 \$12,30                         |        | 12,300 | \$:   | 16,500                                    | \$     | 10,800    |       |  |

| Energy cost | by month | for whol | e building |
|-------------|----------|----------|------------|
|-------------|----------|----------|------------|

|       |            |          |         |         | No Demano<br>resistance | l Limit<br>heati | , no<br>ng | r           | Demand li<br>esistance | imit<br>hea | ed, no<br>ting, at |    |        |      |                 |
|-------|------------|----------|---------|---------|-------------------------|------------------|------------|-------------|------------------------|-------------|--------------------|----|--------|------|-----------------|
| Month | A2W HP     | GSHP     | A2W HP  | GSHP    | A2W HP                  | G                | SHP        | A           | 2W HP                  |             | GSHP               | Α  | 2W HP  |      | GSHP            |
|       | Building k | Wh/month | kW peak | x/month | Cost/m                  | nonth            |            |             | Cost/r                 | non         | th                 |    | Demand | char | ges <u>only</u> |
| 1     | 13,000     | 8,000    | 35      | 19      | \$<br>2,600             | \$               | 1,500      | \$          | 2,600                  | \$          | 1,500              | \$ | 731    | \$   | 391             |
| 2     | 13,000     | 8,000    | 35      | 19      | \$<br>2,600             | \$               | 1,500      | \$          | 2,600                  | \$          | 1,500              | \$ | 739    | \$   | 391             |
| 3     | 10,000     | 7,000    | 35      | 19      | \$<br>2,200             | \$               | 1,400      | \$          | 2,200                  | \$          | 1,400              | \$ | 738    | \$   | 391             |
| 4     | 5,000      | 4,000    | 17      | 11      | \$<br>1,500             | \$               | 1,000      | \$          | 1,100                  | \$          | 800                | \$ | 370    | \$   | 235             |
| 5     | 2,000      | 2,000    | 11      | 8       | \$<br>1,100             | \$               | 700        | \$          | 700                    | \$          | 500                | \$ | 370    | \$   | 196             |
| 6     | 2,000      | 2,000    | 9       | 7       | \$<br>1,100             | \$               | 700        | \$          | 700                    | \$          | 500                | \$ | 370    | \$   | 196             |
| 7     | 1,000      | 1,000    | 6       | 4       | \$<br>900               | \$               | 600        | \$          | 500                    | \$          | 400                | \$ | 370    | \$   | 196             |
| 8     | 1,000      | 1,000    | 8       | 6       | \$<br>900               | \$               | 600        | \$          | 500                    | \$          | 400                | \$ | 370    | \$   | 196             |
| 9     | 2,000      | 2,000    | 13      | 9       | \$<br>1,100             | \$               | 700        | \$          | 700                    | \$          | 500                | \$ | 370    | \$   | 196             |
| 10    | 4,000      | 3,000    | 14      | 10      | \$<br>1,300             | \$               | 800        | \$          | 1,000                  | \$          | 700                | \$ | 370    | \$   | 209             |
| 11    | 8,000      | 6,000    | 21      | 13      | \$<br>1,900             | \$               | 1,300      | \$          | 1,600                  | \$          | 1,100              | \$ | 443    | \$   | 271             |
| 12    | 11,000     | 8,000    | 32      | 17      | \$<br>2,300             | \$               | 1,500      | \$          | 2,300                  | \$          | 1,500              | \$ | 682    | \$   | 362             |
|       | 72,000     | 52,000   |         |         | \$<br>19,500            | \$12             | ,300       | <b>\$</b> : | 16,500                 | \$          | 10,800             | \$ | 5,900  | \$   | 3,200           |

Match complexity of systems to owner's ability to manage it!

#### Gory details of WEC electricity rates

| WEC  | Large Pov | ver Rate          |                |                 |  |  |  |  |  |
|------|-----------|-------------------|----------------|-----------------|--|--|--|--|--|
| \$   | 21.00     | nonth             |                |                 |  |  |  |  |  |
| \$   | 0.14      | Per kWh           | er kWh         |                 |  |  |  |  |  |
| \$   | 35.87     | monthly cha       | nonthly charge |                 |  |  |  |  |  |
| WEC  | Small Cor | nmercial Rate     | 9              |                 |  |  |  |  |  |
| \$   | 0.23      | Per kWh           |                |                 |  |  |  |  |  |
| \$   | 29.89     | monthly cha       | rge            |                 |  |  |  |  |  |
| \$   | 0.14      | payment/kW        | /h exported    |                 |  |  |  |  |  |
| \$   | 0.12      | lifetime cost     | /kWh for PV e  | electricity [5] |  |  |  |  |  |
| Fuel | Costs     |                   |                |                 |  |  |  |  |  |
| \$   | 400       | \$/ton pellets    |                |                 |  |  |  |  |  |
| \$   | 2.00      | \$/gallon propane |                |                 |  |  |  |  |  |

Note that demand charges are ratcheted at 50%

[5] At \$2.50/Wp-DC installed cost,30 yr life, 0.5% degradation inoutput peryear



#### Energy emissions\*



#### Basis of energy emissions

| CO2e emission                    | ns per unit of                   | fuel                             |                                  |                               |                               |                          |               |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|--------------------------|---------------|
|                                  | total lbs CO2                    | e/unit [2]                       |                                  |                               |                               |                          |               |
| Propane                          | 16                               | lbs/gallon                       |                                  |                               |                               |                          |               |
| Electricity                      | 0.9                              | ISO NE                           | Includes me                      | thane leakag                  | ge                            |                          |               |
| Electricity                      | 0.2                              | WEC [4]                          |                                  |                               |                               |                          |               |
| Electricity, PV                  | 0.11                             | from PV [3]                      |                                  |                               |                               |                          |               |
| [2] combustion<br>Note that this | n emissions *<br>is at the build | site/source fa<br>ling meter. Th | actor + precor<br>nis value does | nbustion emi<br>not include d | ssions + comb<br>combustion o | oustion em<br>r heat pum | iission<br>ip |

| efficiencies | or distribution | efficiency v | within the | building |
|--------------|-----------------|--------------|------------|----------|
|              |                 |              |            | U U      |

| [3] includes energy to produce and install PV system  |  |  |
|-------------------------------------------------------|--|--|
| [4] estimated value based on WEC selling class 1 RECs |  |  |
| and buying RECs frome existing old hydro, and         |  |  |
| landfill embodied emissions                           |  |  |

#### **Construction costs**

| Option |                                     | Construction Cost [3] |           |    |               |
|--------|-------------------------------------|-----------------------|-----------|----|---------------|
| #      | Name [2]                            | Without Soft          |           |    |               |
|        |                                     |                       | Costs     | Wi | th soft costs |
| 1      | Prefab Metal, Propane Boiler        | \$                    | 3,910,000 | \$ | 4,720,000     |
| 2      | Wood Frame, Propane Boiler          | \$                    | 4,050,000 | \$ | 4,860,000     |
| 3      | Wood Frame, Air-to-Water Heat Pump  | \$                    | 4,040,000 | \$ | 4,850,000     |
| 4      | Wood Frame, Ground Source Heat Pump | \$                    | 4,350,000 | \$ | 5,160,000     |

\$4,654,000 **4** as of 37/25

### 30 yr life cycle cost analysis

BLCC 5.3-24 -- Building Life-Cycle Cost software from Applied Economics Office, Engineering Laboratory, National Institute of Standards and Technology

- Discount (3%) and Escalation Rates (2.3%) are NOMINAL (inclusive of general inflation)
- Replacement costs included for HPs (20 years), circulators (15 years) boilers (20 years), controls (20 years), HP compressor repair and boiler repair (10 years)
- Annual repair and maintenance costs, based on similar systems
- Run for 30 years -- 50 year life for wells and piping, etc., so residual value at end
- Residual building value at 30 years is estimated at 75% of initial construction cost.

Run by Dan Dupras, PE, Engineering Services of Vermont

#### 30 yr life cycle cost analysis

| Option |                                     | Life Cycle         |           |  |
|--------|-------------------------------------|--------------------|-----------|--|
|        |                                     | Operating Cost [5] |           |  |
|        |                                     |                    | \$\$\$    |  |
| 1      | Prefab Metal, Propane Boiler        | \$                 | 2,955,000 |  |
| 2      | Wood Frame, Propane Boiler          | \$                 | 2,916,000 |  |
| 3      | Wood Frame, Air-to-Water Heat Pump  | \$                 | 2,953,000 |  |
| 4      | Wood Frame, Ground Source Heat Pump | \$                 | 2,923,000 |  |

Probably gone Federal Incentives:

- \$244,000 for ground source system
- \$48,000 for Air-to-water HP
- \$37,500 for smaller 50 kW array
- Feds make direct payment to Town. Efficiency VT incentives not included

[5] Not including incentives, not including enclosure maintenance

Note that these costs are all very close to the same -- within the margins of error!

#### Probably gone Federal Incentives

Probably gone Federal Incentives:

- \$244,000 for ground source system
- \$48,000 for Air-to-water HP
- \$37,500 for smaller 50 kW array
- Feds make direct payment to Town. Efficiency VT incentives not included

#### Selected system: Ground Source Heat Pump System

Closed loop, boreholes



Open loop, "pump and dump"



#### Selected system: Ground Source Heat Pump System

Closed loop, boreholes



Open loop, "pump and dump"

Drilled test well with hydro-geologist advice and found 90 gallons per minute. Open loop!

|                  | HP only COP | Total COP |
|------------------|-------------|-----------|
| GSHP, open loop  | 4.9         | 3.9       |
| GSHP closed loop | 4.2         | 3.6       |
| A2WHP            | 2.7         | 2.6       |

Constant over years

COP decreases as earth cools with unbalanced heat/cool loads Constant over years



#### Ground Source Heat Pump System

#### Commissioning

Cx Associates and A. Shapiro detailed review of MEP and Enclosure

Two formal reviews:

- Design Development
- Construction Document stage

Cx Associates on-site inspection and testing

- MEP systems
- Enclosure inspection, "first instance" testing with fog, IR and blower door; final compliance testing (0.05 cfm50/sq.f.t. shell 6 sides)





#### Lessons learned

- Prepare for peak demand early!
  - Don't forget EV chargers
- Bang down pumping loads!
- Handle big wild card loads -- frozen trucks and big open doors – without increasing peak demand
- Value of commissioning

# Thank you!