

Decarbonizing with Heat Pumps (in a low-GWP, A2L World) Part 1: Hydronic Distribution Systems

Presented by: David Butcher and Mark LaFrance March 20, 2025

Hosted by:

We are: HVAC Manufacturer's Representatives & a Building Automation contractor

AHUs (catalogued – modular – full custom), ERVs, Chillers, ASHP & WSHP Chillers, Fans, Lab exhaust, Lab energy recovery, pre-fab plants, terminal equipment, humidification, air purification, etc.

Specialized in VRV/VRF, ASHPs, VRV driven ERVs and AHUs, VRV controls

Largest Daikin VRV rep in North America!

Building automation, energy and emissions monitoring and reporting, fault detection systems, and lab energy recovery controls

David Butcher HTS New England

Boston University– Mechanical Engineering

Core role at HTS is supporting Contractors with HVAC equipment applications

Likes running, biking, and air conditioners

Mark LaFrance

University of New Hampshire - Mechanical Engineer

Core role at HTS is supporting Consulting Engineers with HVAC equipment applications

Likes long walks at HVAC trade shows, and cars

- Low-GWP: lower global warming potential (driven by EPA)
- A2L: Per ASHRAE 34: Low flammability
- Hydronic: For application in hot water heating systems

Come see us tomorrow at 10:30a for Part 2: Distributed Refrigerant Systems!

DXS

Agenda

- Part 1 Lessons learned from hydronic heat pumps prior to today
- Part 2 New advancements in unitary high-lift machines, high-temp boosters, and alternative heat sources
- Part 3 System-level and equipment-level optimizations
- Part 4 How hydronic compares to other options
- Part 5 The future

Agenda

- Part 1 Lessons learned from hydronic heat pumps prior to today
- Part 2 New advancements in unitary high-lift machines, high-temp boosters, and alternative heat sources
- Part 3 System-level and equipment-level optimizations
- Part 4 How hydronic compares to other options
- Part 5 The future

How are we electrifying hydronic systems?

Electrification Options

without backup

with backup

Electrification Options – Backup Heat

Boilers are relatively inexpensive. Keeping boilers increases reliability, creates flexibility in sizing, and creates opportunity to run them when grid emissions are high.

Electrification Options

without backup

with backup

Electrification Options – How Much Heat Pump?

<u>with</u> backup

Capital Equipment vs. Value

Capital Equipment vs. Value

33% Total Decarb

88% Total Decarb

Smart Defrost

- Only one circuit defrosts at a time
- Intelligent sequencing of defrost across chiller plant

Condensate Management

- Consider where condensate will flow
- Decrease impact of frosting on coil performance
- Can your roof support a small ice rink?

System Volume

What is system volume?

System Volume

When in defrost, we reverse the cycle to cooling mode.

What happens to the loop temperature?

Unit output	0 ton
Load demand	100 ton
Starting temp	120 F
Max. time (6 minutes)	360 seconds
Volume (3.7 gal / ton)	370 gal
Final temp	81 F
Unit output	0 ton
Load demand	100 ton
Starting temp	120 F
Max. time (6 minutes)	360 seconds
VII WAA IN V	1000
Volume (13.0 gal / ton)	1300 gal
Final temp	1300 gal 109 F

Unit output	0 ton			
Load demand	100 ton			
Starting temp	120 F			
Max. time (6 minutes)	360 seconds			
Volume (6.5 gal / ton)	650 gal			
Final temp	98 F			

Agenda

- Part 1 Lessons learned from hydronic heat pumps prior to today
- Part 2 New advancements in unitary high-lift machines, high-temp boosters, and alternative heat sources
- Part 3 System-level and equipment-level optimizations
- Part 4 How hydronic compares to other options
- Part 5 The future

Modular vs. Unitary Air-to-Water Heat Pumps

300-ton cooling plant

(1) 300-ton machine (2-4 compressors)

- or - (10) 30-ton modules (20 compressors)

Modular vs. Unitary Air-to-Water Heat Pumps

- 24 compressors vs. 12 compressors
- 24 circuits vs. 6 circuits
- 9 more balancing valves
- 18 more isolation valves
- 9 more electrical connections / controllers

High-Temp Hot Water (180F)

How do I get 180F HW with an ASHP?

High-Temp Hot Water (180F)

Does it make sense to make 180F HW with an ASHP?

There are caveats. We can't cheat physics.

Alternative Heat Sources

Alternative Heat Sources

Agenda

- Part 1 Lessons learned from hydronic heat pumps prior to today
- Part 2 New advancements in unitary high-lift machines, high-temp boosters, and alternative heat sources
- Part 3 System-level and equipment-level optimizations
- Part 4 How hydronic compares to other options
- Part 5 The future

Thermal Networking

Reducing Demand From Central Heating Systems

Reducing Demand From Central Heating Systems

Air-to-Water Heat Pumps with Heat Recovery

- Now available with inverter compressor technology to achieve new high levels of efficiency
- Operation to -15F ambient
- Fluid temps up to ~130F above ambient

44°F Cooling

120°F Heating

Simultaneous Heating & Cooling

Temperature Reset

Flexibility of Heat Source

Flexibility of Heat Source

What if fossil-fuel-sourced power generation emissions exceed the emissions of running a boiler at the building?

Equipment-Level Optimization

Heat pumps are the heart - controls are the brain

- Building controls more important than ever
- Fault detection and energy monitoring are critical to maintaining building efficiency
- Reporting is not a want but a need

Agenda

- Part 1 Lessons learned from hydronic heat pumps prior to today
- Part 2 New advancements in unitary high-lift machines, high-temp boosters, and alternative heat sources
- Part 3 System-level and equipment-level optimizations
- Part 4 How hydronic compares to other options
- Part 5 The future

Internal Notes

Part 4 – How hydronic compares to other options

Message:

Hydronic vs. VRF

- Maybe we also mention that on jobs where RTU's would be used, the easy button is ASHP RTU's (and mention catalog option 3-68 tons and semi-custom/custom options to 120+ tons)
- > Unknown of VRF future. Replacing items and controls integration. Re-using existing pipes? Next phase-down? How to expand VRF in the future – will there be enough capacity, and if not, not easy to add. Are there enough spare ports? Who can do this work and integrate controls years down the road? Is service locked into that supplier? Is it like a proprietary control system where you can't get out of it even if you dislike what you get?

What we can learn from VRF

- Truly packaged systems for <200 ton systems
- Simplified hydronic packages
- Simplified controls
- Contractor training

Pump

Fan

Sensor

Lighting

Hydronic - System Design Flexibility

- Unlimited end device options
- High-COP convectors
- Simplify building use type conversions
- **Contractor training**

Hydronic - Easier Backup Integration

- Retain existing NG boilers
- Integrate with new electric boilers
- Utilizes the same terminal systems
- Easy hookup for temporary rental systems.

Hydronic - True Heat Recovery and Storage

City Wastewater

OUT

- True building level HR
- Easy integration with evolving technologies
- Utilize thermal batteries for grid stabilization

Refrigerant Leakage – Hydronic vs. VRF

Table 9 Typical Annual <mark>Refrigerant</mark> Leakage Rates by Equipment Type										
	Equipment Type	Typical Annual Leakage Rate of Refrigerant Mass Charge Per Year								
1	Supermarket refrigeration	30%								
3	Commercial condensing units	15%								
4	Water chillers	5%								
5	Hermetic units with no field installed refrigerant piping	1%								
6	Rooftop unit air conditioner	6%								
7	Residential heat pump and air conditioner	2%								
8	Variable refrigerant flow air conditioner	10%								
9	Other refrigeration	2%								
10	Other air conditioning	2%								

Source: ASHRAE 228: Standard Method of Evaluating Zero Net Energy and Zero Net Carbon Building Performance

- VRF has 2-4x refrigerant charge
- More circuits, more fittings, more leakage
 - **Consider GWP of entire building**

Refrigerant GWP						
HOTEL	A Hydronic - DCV	B VRF - CAV	Hydronic System benefit			
Refrigerant charge	66 lbs	357 lbs	81% less charge			
Refrigerant leakage, annual	3.3 lbs	35.7 lbs	91% less leakage			

Hydronic – Ability for Thermal Networking

Agenda

- Part 1 Lessons learned from hydronic heat pumps prior to today
- Part 2 New advancements in unitary high-lift machines, high-temp boosters, and alternative heat sources
- Part 3 System-level and equipment-level optimizations
- Part 4 How hydronic compares to other options
- Part 5 The future

Beyond A2L

Ref: conf.montreal-protocol.org/meeting/mop/mop-28/crps/English/mop-28-crp10.e.docx

Global Agreement on HFC Phase-Down Reached by 197 Countries of the World, in Kigali, Rwanda, on October 15, 2016 October 2022 https://www.epa.gov/climate-Mrcs-reduction/

Proposed Rule – Phasedown of Hydrofluorocarbons: Allowance Allocation Methodology for 2024 and Later Years

What is the HFC Phasedown?

The American Innovation and Manufacturing (AIM) Act directs EPA to phase down production and consumption¹ of hydrofluorocarbon (HFCs) by 65% over a 15-year period through an allowance allocation and trading program. In the HFC Allocaton Framework Rule published in October 2021 (66 FR 55116), EPA established the historic U.S. HFC production and consumption baseline levels from which reductions will be made, using a formula provided by the AIM Act. The rule also established an initial methodology for allocating allowances in calendar years 2022 and 2023. The AIM Act's phasedown schedule (Table 1) is consistent with the phasedown schedule in the Kigail Amendment to the Montreal Protocol, an international treaty to phasedown HFCs by 80 – 65% by 2047. A global phasedown of HFCs consistent with the Kigail Amendment is expected to avoid up to 50% of yolds.

The maximum percentage of the respective baselines that the Agency may allocate per year is shown in Table 1. By October 1 of each year, EPA issues allowances for the following year, relative to those baselines.

of Baseline	ozone-depl
90 percent	reingeration, a
60 percent	suppression, an
30 percent	nave global
20 percent	(a measure or)
15 percent	GHG) that car
	90 percent 80 percent 30 percent 20 percent 15 percent

¹ Consumption is the amount of HFCs newly added to the U.S. market through production and import, minus exports and destruction.

Beyond A2L

R290 = Propane

- GWP = 0
- Similar envelope to current A2L's
- Easily integrate into existing hydronic systems

What does this mean for distributed air and refrigerant?

- Think about 10->20->50 year plan
- Assess procurement risks
- Look to places ahead of us

Summary

- We have come a long way in the past 5-10 years
- Think big but don't lose track of the task at hand
- Don't brute-force decarbonization
- Weigh pros and cons of distributed hydronic vs refrigerant vs air
- Buildings last more than a lifetime...

Questions? Fill out the form for a chance to win a drone!

Ma	rk.	La	fra	nce	e@)hts	S.C	om	•	*	,				•
Da	vic	I.B	utc	he	r@	hts	5.CC	วฑ		•	•	•	•	0	•
				٠	٠	٠	•	٠	•	•			٠	٠	٠
			٠		•		٠	٠	•	•	•		•	•	•
						•		٠		٠	•	•		•	•
		۰	•	٠	•	•	٠	•	•	•	•	•	•		
						•	٠	•	•	•	•	•	•		
		•	•	•	•	•	•	•	•		•	•			
•			•	•	•	•	•	•	•			P	Ą	K	N_